These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 32632015)

  • 1. Functionally distinct Purkinje cell types show temporal precision in encoding locomotion.
    Chang W; Pedroni A; Hohendorf V; Giacomello S; Hibi M; Köster RW; Ampatzis K
    Proc Natl Acad Sci U S A; 2020 Jul; 117(29):17330-17337. PubMed ID: 32632015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of Swimming-Related Synaptic Excitation and Inhibition by olig2
    Harmon TC; McLean DL; Raman IM
    J Neurosci; 2020 Apr; 40(15):3063-3074. PubMed ID: 32139583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid development of Purkinje cell excitability, functional cerebellar circuit, and afferent sensory input to cerebellum in zebrafish.
    Hsieh JY; Ulrich B; Issa FA; Wan J; Papazian DM
    Front Neural Circuits; 2014; 8():147. PubMed ID: 25565973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Mechanisms of locomotor control in the cerebellum].
    Yanagihara D
    Brain Nerve; 2010 Nov; 62(11):1149-56. PubMed ID: 21068451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensorimotor-correlated discharge recorded from ensembles of cerebellar Purkinje cells varies across the estrous cycle of the rat.
    Smith SS
    J Neurophysiol; 1995 Sep; 74(3):1095-108. PubMed ID: 7500135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purkinje cells located in the adult zebrafish valvula cerebelli exhibit variable functional responses.
    Chang W; Pedroni A; Köster RW; Giacomello S; Ampatzis K
    Sci Rep; 2021 Sep; 11(1):18408. PubMed ID: 34526620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Vivo Analysis of Potassium Channelopathies: Loose Patch Recording of Purkinje Cell Firing in Living, Awake Zebrafish.
    Hsieh JY; Papazian DM
    Methods Mol Biol; 2018; 1684():237-252. PubMed ID: 29058196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Encoding of locomotion kinematics in the mouse cerebellum.
    Muzzu T; Mitolo S; Gava GP; Schultz SR
    PLoS One; 2018; 13(9):e0203900. PubMed ID: 30212563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structured Variability in Purkinje Cell Activity during Locomotion.
    Sauerbrei BA; Lubenov EV; Siapas AG
    Neuron; 2015 Aug; 87(4):840-52. PubMed ID: 26291165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regional and genotypic differences in intrinsic electrophysiological properties of cerebellar Purkinje neurons from wild-type and dystrophin-deficient mdx mice.
    Snow WM; Anderson JE; Fry M
    Neurobiol Learn Mem; 2014 Jan; 107():19-31. PubMed ID: 24220092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple Rhythm-Generating Circuits Act in Tandem with Pacemaker Properties to Control the Start and Speed of Locomotion.
    Song J; Pallucchi I; Ausborn J; Ampatzis K; Bertuzzi M; Fontanel P; Picton LD; El Manira A
    Neuron; 2020 Mar; 105(6):1048-1061.e4. PubMed ID: 31982322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Human Central Pattern Generator for Locomotion: Does It Exist and Contribute to Walking?
    Minassian K; Hofstoetter US; Dzeladini F; Guertin PA; Ijspeert A
    Neuroscientist; 2017 Dec; 23(6):649-663. PubMed ID: 28351197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lifelong regeneration of cerebellar Purkinje cells after induced cell ablation in zebrafish.
    Pose-Méndez S; Schramm P; Winter B; Meier JC; Ampatzis K; Köster RW
    Elife; 2023 Apr; 12():. PubMed ID: 37042514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Responses of cerebellar Purkinje cells during fictive optomotor behavior in larval zebrafish.
    Scalise K; Shimizu T; Hibi M; Sawtell NB
    J Neurophysiol; 2016 Nov; 116(5):2067-2080. PubMed ID: 27512018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regional distribution of putative rhythm-generating and pattern-forming components of the mammalian locomotor CPG.
    Griener A; Dyck J; Gosgnach S
    Neuroscience; 2013 Oct; 250():644-50. PubMed ID: 23933310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct responses of Purkinje neurons and roles of simple spikes during associative motor learning in larval zebrafish.
    Harmon TC; Magaram U; McLean DL; Raman IM
    Elife; 2017 May; 6():. PubMed ID: 28541889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motor context dominates output from purkinje cell functional regions during reflexive visuomotor behaviours.
    Knogler LD; Kist AM; Portugues R
    Elife; 2019 Jan; 8():. PubMed ID: 30681408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intersegmental coordination of the central pattern generator via interleaved electrical and chemical synapses in zebrafish spinal cord.
    Kim LU; Riecke H
    J Comput Neurosci; 2023 Feb; 51(1):129-147. PubMed ID: 36229719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional regionalization of the teleost cerebellum analyzed in vivo.
    Matsui H; Namikawa K; Babaryka A; Köster RW
    Proc Natl Acad Sci U S A; 2014 Aug; 111(32):11846-51. PubMed ID: 25002482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rostral lumbar segments are the key controllers of hindlimb locomotor rhythmicity in the adult spinal rat.
    Gerasimenko Y; Preston C; Zhong H; Roy RR; Edgerton VR; Shah PK
    J Neurophysiol; 2019 Aug; 122(2):585-600. PubMed ID: 30943092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.