These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 32632183)
1. Water corrosivity of polluted reservoir and hydropower sustainability. Sunardi S; Ariyani M; Agustian M; Withaningsih S; Parikesit P; Juahir H; Ismail A; Abdoellah OS Sci Rep; 2020 Jul; 10(1):11110. PubMed ID: 32632183 [TBL] [Abstract][Full Text] [Related]
2. Modelling the impacts of altered management practices, land use and climate changes on the water quality of the Millbrook catchment-reservoir system in South Australia. Nguyen HH; Recknagel F; Meyer W; Frizenschaf J; Shrestha MK J Environ Manage; 2017 Nov; 202(Pt 1):1-11. PubMed ID: 28715676 [TBL] [Abstract][Full Text] [Related]
3. China's rising hydropower demand challenges water sector. Liu J; Zhao D; Gerbens-Leenes PW; Guan D Sci Rep; 2015 Jul; 5():11446. PubMed ID: 26158871 [TBL] [Abstract][Full Text] [Related]
4. Accumulation of heavy metals in freshwater fish in cage aquaculture at Cirata Reservoir, West Java, Indonesia. Salami IR; Rahmawati S; Sutarto RI; Jaya PM Ann N Y Acad Sci; 2008 Oct; 1140():290-6. PubMed ID: 18991927 [TBL] [Abstract][Full Text] [Related]
5. Water quality characteristics and corrosion potential in blending zones in X city drinking water distribution system. Zhang H; Wang K; Zhou X; Zhu W; Wang W Environ Monit Assess; 2018 Aug; 190(9):524. PubMed ID: 30116900 [TBL] [Abstract][Full Text] [Related]
6. Controlling biodiversity impacts of future global hydropower reservoirs by strategic site selection. Dorber M; Arvesen A; Gernaat D; Verones F Sci Rep; 2020 Dec; 10(1):21777. PubMed ID: 33311532 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of the scaling and corrosive potential of the cooling water supply system of a nuclear power plant based on the physicochemical control dataset. Kuznietsov P Data Brief; 2024 Jun; 54():110347. PubMed ID: 38586140 [TBL] [Abstract][Full Text] [Related]
8. A hydro-economic model for water level fluctuations: combining limnology with economics for sustainable development of hydropower. Hirsch PE; Schillinger S; Weigt H; Burkhardt-Holm P PLoS One; 2014; 9(12):e114889. PubMed ID: 25526619 [TBL] [Abstract][Full Text] [Related]
9. Cumulative effects of cascade hydropower stations on total dissolved gas supersaturation. Ma Q; Li R; Feng J; Lu J; Zhou Q Environ Sci Pollut Res Int; 2018 May; 25(14):13536-13547. PubMed ID: 29492821 [TBL] [Abstract][Full Text] [Related]
10. Exploring synergies in the water-food-energy nexus by using an integrated hydro-economic optimization model for the Lancang-Mekong River basin. Do P; Tian F; Zhu T; Zohidov B; Ni G; Lu H; Liu H Sci Total Environ; 2020 Aug; 728():137996. PubMed ID: 32570321 [TBL] [Abstract][Full Text] [Related]
11. Assessing the water and carbon footprint of hydropower stations at a national scale. Wang J; Chen X; Liu Z; Frans VF; Xu Z; Qiu X; Xu F; Li Y Sci Total Environ; 2019 Aug; 676():595-612. PubMed ID: 31051366 [TBL] [Abstract][Full Text] [Related]
12. Assessment of the potential of scale formation and corrosivity of tap water resources and the network distribution system in Shiraz, South Iran. Dehghani M; Tex F; Zamanian Z Pak J Biol Sci; 2010 Jan; 13(2):88-92. PubMed ID: 20415143 [TBL] [Abstract][Full Text] [Related]
13. Dynamics of heat transport across sediment deposited hyporheic zone inside reservoirs following hydropower production. Shi W; Chen Y; Chen Q; Liu D Sci Total Environ; 2020 Mar; 707():135611. PubMed ID: 31771842 [TBL] [Abstract][Full Text] [Related]
14. Effects of River Discharge and Land Use and Land Cover (LULC) on Water Quality Dynamics in Migina Catchment, Rwanda. Uwimana A; van Dam A; Gettel G; Bigirimana B; Irvine K Environ Manage; 2017 Sep; 60(3):496-512. PubMed ID: 28660371 [TBL] [Abstract][Full Text] [Related]
15. Assessing the drought mitigation ability of the reservoir in the downstream of the Yellow River. Wang Y; Yang J; Chang J; Zhang R Sci Total Environ; 2019 Jan; 646():1327-1335. PubMed ID: 30235618 [TBL] [Abstract][Full Text] [Related]
16. Trophic state modeling for shallow freshwater reservoir: a new approach. Markad AT; Landge AT; Nayak BB; Inamdar AB; Mishra AK Environ Monit Assess; 2019 Aug; 191(9):586. PubMed ID: 31440835 [TBL] [Abstract][Full Text] [Related]
17. Evaluating and optimizing the operation of the hydropower system in the Upper Yellow River: A general LINGO-based integrated framework. Si Y; Li X; Yin D; Liu R; Wei J; Huang Y; Li T; Liu J; Gu S; Wang G PLoS One; 2018; 13(1):e0191483. PubMed ID: 29370206 [TBL] [Abstract][Full Text] [Related]
18. Modeling Net Land Occupation of Hydropower Reservoirs in Norway for Use in Life Cycle Assessment. Dorber M; May R; Verones F Environ Sci Technol; 2018 Feb; 52(4):2375-2384. PubMed ID: 29328658 [TBL] [Abstract][Full Text] [Related]
19. Hydropower impacts on reservoir fish populations are modified by environmental variation. Eloranta AP; Finstad AG; Helland IP; Ugedal O; Power M Sci Total Environ; 2018 Mar; 618():313-322. PubMed ID: 29131999 [TBL] [Abstract][Full Text] [Related]
20. Effects of agricultural land use on sediment and nutrient retention in valley-bottom wetlands of Migina catchment, southern Rwanda. Uwimana A; van Dam AA; Gettel GM; Irvine K J Environ Manage; 2018 Aug; 219():103-114. PubMed ID: 29734014 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]