BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 32632234)

  • 1. Chemical modification of lignin derived from spent coffee grounds for methylene blue adsorption.
    Taleb F; Ammar M; Mosbah MB; Salem RB; Moussaoui Y
    Sci Rep; 2020 Jul; 10(1):11048. PubMed ID: 32632234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study on the chemical modification of alkali lignin towards for cellulase adsorbent application.
    Mou H; Huang J; Li W; Wu X; Liu Y; Fan H
    Int J Biol Macromol; 2020 Apr; 149():794-800. PubMed ID: 31982529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface modification of spent coffee grounds using phosphoric acid for enhancement of methylene blue adsorption from aqueous solution.
    Akindolie MS; Choi HJ
    Water Sci Technol; 2022 Feb; 85(4):1218-1234. PubMed ID: 35228365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of granular activated carbons derived from spent coffee grounds by entrapment in calcium alginate beads for adsorption of acid orange 7 and methylene blue.
    Jung KW; Choi BH; Hwang MJ; Jeong TU; Ahn KH
    Bioresour Technol; 2016 Nov; 219():185-195. PubMed ID: 27494099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chitosan/nano-lignin based composite as a new sorbent for enhanced removal of dye pollution from aqueous solutions.
    Sohni S; Hashim R; Nidaullah H; Lamaming J; Sulaiman O
    Int J Biol Macromol; 2019 Jul; 132():1304-1317. PubMed ID: 30922916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioadsorbent nanocellulose aerogel efficiency impregnated with spent coffee grounds.
    Ahmad A; Omar KM; Alahmadi AA; Rizg WY; Bairwan RD; Abdul Khalil HPS
    Int J Biol Macromol; 2024 Feb; 258(Pt 1):128746. PubMed ID: 38104681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative study for adsorption of methylene blue dye on biochar derived from orange peel and banana biomass in aqueous solutions.
    Amin MT; Alazba AA; Shafiq M
    Environ Monit Assess; 2019 Nov; 191(12):735. PubMed ID: 31707527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization and use of a lignin sample extracted from Eucalyptus grandis sawdust for the removal of methylene blue dye.
    Cemin A; Ferrarini F; Poletto M; Bonetto LR; Bortoluz J; Lemée L; Guégan R; Esteves VI; Giovanela M
    Int J Biol Macromol; 2021 Feb; 170():375-389. PubMed ID: 33359804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of a cationic dye removal by a chemically modified agriculture by-product using response surface methodology: biomasses characterization and adsorption properties.
    Azzaz AA; Jellali S; Akrout H; Assadi AA; Bousselmi L
    Environ Sci Pollut Res Int; 2017 Apr; 24(11):9831-9846. PubMed ID: 27726078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption of Cadmium, Manganese and Lead Ions from Aqueous Solutions Using Spent Coffee Grounds and Biochar Produced by Its Pyrolysis in the Fluidized Bed Reactor.
    Chwastowski J; Bradło D; Żukowski W
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32575573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sorption of carbendazim and linuron from aqueous solutions with activated carbon produced from spent coffee grounds: Equilibrium, kinetic and thermodynamic approach.
    Hgeig A; Novaković M; Mihajlović I
    J Environ Sci Health B; 2019; 54(4):226-236. PubMed ID: 30633640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile synthesis of manganese oxide modified lignin nanocomposites from lignocellulosic biorefinery wastes for dye removal.
    Zhai R; Hu J; Chen X; Xu Z; Wen Z; Jin M
    Bioresour Technol; 2020 Nov; 315():123846. PubMed ID: 32702580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of untreated coffee husks as potential biosorbents for treatment of dye contaminated waters.
    Oliveira LS; Franca AS; Alves TM; Rocha SD
    J Hazard Mater; 2008 Jul; 155(3):507-12. PubMed ID: 18226444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unlocking the potential of phenolated kraft lignin as a versatile feed additive.
    Li L; Wei HL; Wang WL; Zhang PH; Jing F; Zhou YH; Yang XH
    Int J Biol Macromol; 2024 Jun; 271(Pt 2):132234. PubMed ID: 38763239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parametric and adsorption kinetic studies of methylene blue removal from simulated textile water using durian (Durio zibethinus murray) skin.
    Anisuzzaman SM; Joseph CG; Krishnaiah D; Bono A; Ooi LC
    Water Sci Technol; 2015; 72(6):896-907. PubMed ID: 26360749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of sulfonation in lignin-based material for adsorption removal of cationic dyes.
    Li J; Li H; Yuan Z; Fang J; Chang L; Zhang H; Li C
    Int J Biol Macromol; 2019 Aug; 135():1171-1181. PubMed ID: 31176859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activated carbons from waste biomass: an alternative use for biodiesel production solid residues.
    Nunes AA; Franca AS; Oliveira LS
    Bioresour Technol; 2009 Mar; 100(5):1786-92. PubMed ID: 18996006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effective elimination of Hg(II) from water bodies with acid-modified magnetic biomass spent coffee grounds: conditional optimization and application.
    Cheng D; Li Y; Zheng X; Guo Y
    Environ Sci Pollut Res Int; 2024 Jun; ():. PubMed ID: 38949731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption isotherms and kinetic modeling of methylene blue dye onto a carbonaceous hydrochar adsorbent derived from coffee husk waste.
    Tran TH; Le AH; Pham TH; Nguyen DT; Chang SW; Chung WJ; Nguyen DD
    Sci Total Environ; 2020 Jul; 725():138325. PubMed ID: 32464744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption of methylene blue dye from aqueous solution by sugar extracted spent rice biomass.
    Ur Rehman MS; Kim I; Han JI
    Carbohydr Polym; 2012 Oct; 90(3):1314-22. PubMed ID: 22939346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.