These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 32632260)

  • 41. Diversification of C(4) grasses (Poaceae) does not coincide with their ecological dominance.
    Bouchenak-Khelladi Y; Slingsby JA; Verboom GA; Bond WJ
    Am J Bot; 2014 Feb; 101(2):300-7. PubMed ID: 24509796
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The ancient wave of polyploidization events in flowering plants and their facilitated adaptation to environmental stress.
    Zhang L; Wu S; Chang X; Wang X; Zhao Y; Xia Y; Trigiano RN; Jiao Y; Chen F
    Plant Cell Environ; 2020 Dec; 43(12):2847-2856. PubMed ID: 33001478
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Epiphytic leafy liverworts diversified in angiosperm-dominated forests.
    Feldberg K; Schneider H; Stadler T; Schäfer-Verwimp A; Schmidt AR; Heinrichs J
    Sci Rep; 2014 Aug; 4():5974. PubMed ID: 25099137
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A new fossil assemblage shows that large angiosperm trees grew in North America by the Turonian (Late Cretaceous).
    Jud NA; D'Emic MD; Williams SA; Mathews JC; Tremaine KM; Bhattacharya J
    Sci Adv; 2018 Sep; 4(9):eaar8568. PubMed ID: 30263954
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Diversification of myco-heterotrophic angiosperms: evidence from Burmanniaceae.
    Merckx V; Chatrou LW; Lemaire B; Sainge MN; Huysmans S; Smets EF
    BMC Evol Biol; 2008 Jun; 8():178. PubMed ID: 18573195
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Rosid radiation and the rapid rise of angiosperm-dominated forests.
    Wang H; Moore MJ; Soltis PS; Bell CD; Brockington SF; Alexandre R; Davis CC; Latvis M; Manchester SR; Soltis DE
    Proc Natl Acad Sci U S A; 2009 Mar; 106(10):3853-8. PubMed ID: 19223592
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evolutionary history of a keystone pollinator parallels the biome occupancy of angiosperms in the Greater Cape Floristic Region.
    de Jager ML; Ellis AG
    Mol Phylogenet Evol; 2017 Feb; 107():530-537. PubMed ID: 27940332
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Plastid phylogenomics and biogeographic analysis support a trans-Tethyan origin and rapid early radiation of Cornales in the Mid-Cretaceous.
    Fu CN; Mo ZQ; Yang JB; Ge XJ; Li DZ; Xiang QJ; Gao LM
    Mol Phylogenet Evol; 2019 Nov; 140():106601. PubMed ID: 31445202
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Trait-dependent diversification in angiosperms: Patterns, models and data.
    Helmstetter AJ; Zenil-Ferguson R; Sauquet H; Otto SP; Méndez M; Vallejo-Marin M; Schönenberger J; Burgarella C; Anderson B; de Boer H; Glémin S; Käfer J
    Ecol Lett; 2023 Apr; 26(4):640-657. PubMed ID: 36829296
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The evolution of scarab beetles tracks the sequential rise of angiosperms and mammals.
    Ahrens D; Schwarzer J; Vogler AP
    Proc Biol Sci; 2014 Sep; 281(1791):20141470. PubMed ID: 25100705
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Leaf evolution in Southern Hemisphere conifers tracks the angiosperm ecological radiation.
    Biffin E; Brodribb TJ; Hill RS; Thomas P; Lowe AJ
    Proc Biol Sci; 2012 Jan; 279(1727):341-8. PubMed ID: 21653584
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Rates of niche and phenotype evolution lag behind diversification in a temperate radiation.
    Folk RA; Stubbs RL; Mort ME; Cellinese N; Allen JM; Soltis PS; Soltis DE; Guralnick RP
    Proc Natl Acad Sci U S A; 2019 May; 116(22):10874-10882. PubMed ID: 31085636
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Self-sterility in flowering plants: preventing self-fertilization increases family diversification rates.
    Ferrer MM; Good SV
    Ann Bot; 2012 Aug; 110(3):535-53. PubMed ID: 22684683
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Seed size and its rate of evolution correlate with species diversification across angiosperms.
    Igea J; Miller EF; Papadopulos AST; Tanentzap AJ
    PLoS Biol; 2017 Jul; 15(7):e2002792. PubMed ID: 28723902
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A fully resolved backbone phylogeny reveals numerous dispersals and explosive diversifications throughout the history of Asteraceae.
    Mandel JR; Dikow RB; Siniscalchi CM; Thapa R; Watson LE; Funk VA
    Proc Natl Acad Sci U S A; 2019 Jul; 116(28):14083-14088. PubMed ID: 31209018
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evidence for an extinct lineage of angiosperms from the Early Cretaceous of Patagonia and implications for the early radiation of flowering plants.
    Coiro M; Martínez LCA; Upchurch GR; Doyle JA
    New Phytol; 2020 Oct; 228(1):344-360. PubMed ID: 32400897
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The angiosperm radiation revisited, an ecological explanation for Darwin's 'abominable mystery'.
    Berendse F; Scheffer M
    Ecol Lett; 2009 Sep; 12(9):865-72. PubMed ID: 19572916
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fossil evidence of core monocots in the Early Cretaceous.
    Coiffard C; Kardjilov N; Manke I; Bernardes-de-Oliveira MEC
    Nat Plants; 2019 Jul; 5(7):691-696. PubMed ID: 31285562
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Molecular phylogenetic dating of asterid flowering plants shows early Cretaceous diversification.
    Bremer K; Friis EM; Bremer B
    Syst Biol; 2004 Jun; 53(3):496-505. PubMed ID: 15503676
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ecomorphological diversification of squamates in the Cretaceous.
    Herrera-Flores JA; Stubbs TL; Benton MJ
    R Soc Open Sci; 2021 Mar; 8(3):201961. PubMed ID: 33959350
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.