BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

408 related articles for article (PubMed ID: 32632275)

  • 1. Exercise adaptations: molecular mechanisms and potential targets for therapeutic benefit.
    McGee SL; Hargreaves M
    Nat Rev Endocrinol; 2020 Sep; 16(9):495-505. PubMed ID: 32632275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of exercise-induced survival motor neuron expression in the skeletal muscle of spinal muscular atrophy-like mice.
    Ng SY; Mikhail A; Ljubicic V
    J Physiol; 2019 Sep; 597(18):4757-4778. PubMed ID: 31361024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compensatory regulation of HDAC5 in muscle maintains metabolic adaptive responses and metabolism in response to energetic stress.
    McGee SL; Swinton C; Morrison S; Gaur V; Campbell DE; Jorgensen SB; Kemp BE; Baar K; Steinberg GR; Hargreaves M
    FASEB J; 2014 Aug; 28(8):3384-95. PubMed ID: 24732133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Basis of Exercise-Induced Skeletal Muscle Mitochondrial Biogenesis: Historical Advances, Current Knowledge, and Future Challenges.
    Perry CGR; Hawley JA
    Cold Spring Harb Perspect Med; 2018 Sep; 8(9):. PubMed ID: 28507194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exercise-induced GLUT4 transcription via inactivation of HDAC4/5 in mouse skeletal muscle in an AMPKα2-dependent manner.
    Niu Y; Wang T; Liu S; Yuan H; Li H; Fu L
    Biochim Biophys Acta Mol Basis Dis; 2017 Sep; 1863(9):2372-2381. PubMed ID: 28688716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The molecular bases of training adaptation.
    Coffey VG; Hawley JA
    Sports Med; 2007; 37(9):737-63. PubMed ID: 17722947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exercise and the Skeletal Muscle Epigenome.
    McGee SL; Walder KR
    Cold Spring Harb Perspect Med; 2017 Sep; 7(9):. PubMed ID: 28320830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The regulation of autophagy during exercise in skeletal muscle.
    Vainshtein A; Hood DA
    J Appl Physiol (1985); 2016 Mar; 120(6):664-73. PubMed ID: 26679612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physical Exercise and Epigenetic Modifications in Skeletal Muscle.
    Widmann M; Nieß AM; Munz B
    Sports Med; 2019 Apr; 49(4):509-523. PubMed ID: 30778851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Skeletal Muscle as an Endocrine Organ: The Role of Myokines in Exercise Adaptations.
    Hoffmann C; Weigert C
    Cold Spring Harb Perspect Med; 2017 Nov; 7(11):. PubMed ID: 28389517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular and cellular adaptation of muscle in response to physical training.
    Booth FW; Tseng BS; Flück M; Carson JA
    Acta Physiol Scand; 1998 Mar; 162(3):343-50. PubMed ID: 9578380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exercise-induced histone modifications in human skeletal muscle.
    McGee SL; Fairlie E; Garnham AP; Hargreaves M
    J Physiol; 2009 Dec; 587(Pt 24):5951-8. PubMed ID: 19884317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Invited review: intracellular signaling in contracting skeletal muscle.
    Sakamoto K; Goodyear LJ
    J Appl Physiol (1985); 2002 Jul; 93(1):369-83. PubMed ID: 12070227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exercise and Gene Expression.
    Hargreaves M
    Prog Mol Biol Transl Sci; 2015; 135():457-69. PubMed ID: 26477926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intermittent and continuous high-intensity exercise training induce similar acute but different chronic muscle adaptations.
    Cochran AJ; Percival ME; Tricarico S; Little JP; Cermak N; Gillen JB; Tarnopolsky MA; Gibala MJ
    Exp Physiol; 2014 May; 99(5):782-91. PubMed ID: 24532598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endothelial nitric oxide synthase is central to skeletal muscle metabolic regulation and enzymatic signaling during exercise in vivo.
    Lee-Young RS; Ayala JE; Hunley CF; James FD; Bracy DP; Kang L; Wasserman DH
    Am J Physiol Regul Integr Comp Physiol; 2010 May; 298(5):R1399-408. PubMed ID: 20200137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AMPK-mediated regulation of transcription in skeletal muscle.
    McGee SL; Hargreaves M
    Clin Sci (Lond); 2010 Jan; 118(8):507-18. PubMed ID: 20088830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The intersection of exercise and aging on mitochondrial protein quality control.
    Zhang Y; Oliveira AN; Hood DA
    Exp Gerontol; 2020 Mar; 131():110824. PubMed ID: 31911185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Similar skeletal muscle angiogenic and mitochondrial signalling following 8 weeks of endurance exercise in mice: discontinuous versus continuous training.
    Malek MH; Hüttemann M; Lee I; Coburn JW
    Exp Physiol; 2013 Mar; 98(3):807-18. PubMed ID: 23180811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emerging roles of extracellular vesicles in the intercellular communication for exercise-induced adaptations.
    Denham J; Spencer SJ
    Am J Physiol Endocrinol Metab; 2020 Aug; 319(2):E320-E329. PubMed ID: 32603601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.