These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 32632343)

  • 1. Fire behavior and smoke modeling: Model improvement and measurement needs for next-generation smoke research and forecasting systems.
    Liu Y; Kochanski A; Baker KR; Mell W; Linn R; Paugam R; Mandel J; Fournier A; Jenkins MA; Goodrick S; Achtemeier G; Zhao F; Ottmar R; French NH; Larkin N; Brown T; Hudak A; Dickinson M; Potter B; Clements C; Urbanski S; Prichard S; Watts A; McNamara D
    Int J Wildland Fire; 2019; 28(8):570. PubMed ID: 32632343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Fire and Smoke Model Evaluation Experiment-A Plan for Integrated, Large Fire-Atmosphere Field Campaigns.
    Prichard S; Larkin NS; Ottmar R; French NHF; Baker K; Brown T; Clements C; Dickinson M; Hudak A; Kochanski A; Linn R; Liu Y; Potter B; Mell W; Tanzer D; Urbanski S; Watts A
    Atmosphere (Basel); 2019; 10(2):66. PubMed ID: 32704394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A multi-analysis approach for estimating regional health impacts from the 2017 Northern California wildfires.
    O'Neill SM; Diao M; Raffuse S; Al-Hamdan M; Barik M; Jia Y; Reid S; Zou Y; Tong D; West JJ; Wilkins J; Marsha A; Freedman F; Vargo J; Larkin NK; Alvarado E; Loesche P
    J Air Waste Manag Assoc; 2021 Jul; 71(7):791-814. PubMed ID: 33630725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing Vertical Allocation of Wildfire Smoke Emissions Using Observational Constraints From Airborne Lidar in the Western U.S.
    Ye X; Saide PE; Hair J; Fenn M; Shingler T; Soja A; Gargulinski E; Wiggins E
    J Geophys Res Atmos; 2022 Nov; 127(21):e2022JD036808. PubMed ID: 37035763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of fuel type and combustion phase on the toxicity of biomass smoke following inhalation exposure in mice.
    Kim YH; King C; Krantz T; Hargrove MM; George IJ; McGee J; Copeland L; Hays MD; Landis MS; Higuchi M; Gavett SH; Gilmour MI
    Arch Toxicol; 2019 Jun; 93(6):1501-1513. PubMed ID: 31006059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using National Ambient Air Quality Standards for fine particulate matter to assess regional wildland fire smoke and air quality management.
    Schweizer D; Cisneros R; Traina S; Ghezzehei TA; Shaw G
    J Environ Manage; 2017 Oct; 201():345-356. PubMed ID: 28692834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Respiratory Impacts of Wildland Fire Smoke: Future Challenges and Policy Opportunities. An Official American Thoracic Society Workshop Report.
    Rice MB; Henderson SB; Lambert AA; Cromar KR; Hall JA; Cascio WE; Smith PG; Marsh BJ; Coefield S; Balmes JR; Kamal A; Gilmour MI; Carlsten C; Navarro KM; Collman GW; Rappold A; Miller MD; Stone SL; Costa DL
    Ann Am Thorac Soc; 2021 Jun; 18(6):921-930. PubMed ID: 33938390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and application of an aerosol screening model for size-resolved urban aerosols.
    Stanier CO; Lee SR;
    Res Rep Health Eff Inst; 2014 Jun; (179):3-79. PubMed ID: 25145039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zebrafish irritant responses to wildland fire-related biomass smoke are influenced by fuel type, combustion phase, and byproduct chemistry.
    Martin WK; Padilla S; Kim YH; Hunter DL; Hays MD; DeMarini DM; Hazari MS; Gilmour MI; Farraj AK
    J Toxicol Environ Health A; 2021 Aug; 84(16):674-688. PubMed ID: 34006202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR).
    Velbel MA; Cockell CS; Glavin DP; Marty B; Regberg AB; Smith AL; Tosca NJ; Wadhwa M; Kminek G; Meyer MA; Beaty DW; Carrier BL; Haltigin T; Hays LE; Agee CB; Busemann H; Cavalazzi B; Debaille V; Grady MM; Hauber E; Hutzler A; McCubbin FM; Pratt LM; Smith CL; Summons RE; Swindle TD; Tait KT; Udry A; Usui T; Westall F; Zorzano MP
    Astrobiology; 2022 Jun; 22(S1):S112-S164. PubMed ID: 34904892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulating smoke transport from wildland fires with a regional-scale air quality model: sensitivity to spatiotemporal allocation of fire emissions.
    Garcia-Menendez F; Hu Y; Odman MT
    Sci Total Environ; 2014 Sep; 493():544-53. PubMed ID: 24973934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. WRF-SMOKE-CMAQ modeling system for air quality evaluation in São Paulo megacity with a 2008 experimental campaign data.
    de Almeida Albuquerque TT; de Fátima Andrade M; Ynoue RY; Moreira DM; Andreão WL; Dos Santos FS; Nascimento EGS
    Environ Sci Pollut Res Int; 2018 Dec; 25(36):36555-36569. PubMed ID: 30374719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling acute respiratory illness during the 2007 San Diego wildland fires using a coupled emissions-transport system and generalized additive modeling.
    Thelen B; French NH; Koziol BW; Billmire M; Owen RC; Johnson J; Ginsberg M; Loboda T; Wu S
    Environ Health; 2013 Nov; 12():94. PubMed ID: 24192051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of ozone measurement methods in biomass burning smoke: an evaluation under field and laboratory conditions.
    Long RW; Whitehill A; Habel A; Urbanski S; Halliday H; Colón M; Kaushik S; Landis MS
    Atmos Meas Tech; 2021 Mar; 14(3):1783-1800. PubMed ID: 34017362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine Learning-Based Integration of High-Resolution Wildfire Smoke Simulations and Observations for Regional Health Impact Assessment.
    Zou Y; O'Neill SM; Larkin NK; Alvarado EC; Solomon R; Mass C; Liu Y; Odman MT; Shen H
    Int J Environ Res Public Health; 2019 Jun; 16(12):. PubMed ID: 31212933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The FireWork air quality forecast system with near-real-time biomass burning emissions: Recent developments and evaluation of performance for the 2015 North American wildfire season.
    Pavlovic R; Chen J; Anderson K; Moran MD; Beaulieu PA; Davignon D; Cousineau S
    J Air Waste Manag Assoc; 2016 Sep; 66(9):819-41. PubMed ID: 26934496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling crop residue burning experiments to evaluate smoke emissions and plume transport.
    Zhou L; Baker KR; Napelenok SL; Pouliot G; Elleman R; O'Neill SM; Urbanski SP; Wong DC
    Sci Total Environ; 2018 Jun; 627():523-533. PubMed ID: 29426175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using wildland fire smoke modeling data in gerontological health research (California, 2007-2018).
    Koman PD; Billmire M; Baker KR; Carter JM; Thelen BJ; French NHF; Bell SA
    Sci Total Environ; 2022 Sep; 838(Pt 3):156403. PubMed ID: 35660427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Statistical Comparison and Assessment of Four Fire Emissions Inventories for 2013 and a Large Wildfire in the Western United States.
    Faulstich SD; Schissler AG; Strickland MJ; Holmes HA
    Fire (Basel); 2022 Feb; 5(1):. PubMed ID: 35295881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Wildland Fire Heat Budget-Using Bi-Directional Probes to Measure Sensible Heat Flux and Energy in Surface Fires.
    Dickinson MB; Wold CE; Butler BW; Kremens RL; Jimenez D; Sopko P; O'Brien JJ
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33803711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.