These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 32632465)

  • 61. Enrichment mechanisms of Mo in soil in the karst region Guangxi, China.
    Lin K; Yang Z; Yu T; Ji W; Liu X; Li B; Wu Z; Li X; Ma X; Wang L; Tang Q
    Ecotoxicol Environ Saf; 2023 Apr; 255():114808. PubMed ID: 36958262
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Biochar increases arsenic release from an anaerobic paddy soil due to enhanced microbial reduction of iron and arsenic.
    Wang N; Xue XM; Juhasz AL; Chang ZZ; Li HB
    Environ Pollut; 2017 Jan; 220(Pt A):514-522. PubMed ID: 27720546
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Arsenic Speciation and Availability in Orchard Soils Historically Contaminated with Lead Arsenate.
    Gamble AV; Givens AK; Sparks DL
    J Environ Qual; 2018 Jan; 47(1):121-128. PubMed ID: 29415098
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The Kinetics of Aging and Reducing Processes of Cr(VI) in Two Soils.
    Yang Y; Peng Y; Yang Z; Cheng P; Li F; Wang M; Liu T
    Bull Environ Contam Toxicol; 2019 Jul; 103(1):82-89. PubMed ID: 30850854
    [TBL] [Abstract][Full Text] [Related]  

  • 65. [Morphology of soil iron oxides and its correlation with soil-forming process and forming conditions in a karst mountain].
    Zhang ZW; Zhu ZX; Fu WL; Wen ZL
    Huan Jing Ke Xue; 2012 Jun; 33(6):2013-20. PubMed ID: 22946190
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Mechanism of arsenate mobilization from goethite by aliphatic carboxylic acid.
    Shi R; Jia Y; Wang C; Yao S
    J Hazard Mater; 2009 Apr; 163(2-3):1129-33. PubMed ID: 18752889
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Selenium fractionation and speciation in agriculture soils and accumulation in corn (Zea mays L.) under field conditions in Shaanxi Province, China.
    Wang S; Liang D; Wang D; Wei W; Fu D; Lin Z
    Sci Total Environ; 2012 Jun; 427-428():159-64. PubMed ID: 22542257
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Fate of arsenite and arsenate in flooded and not flooded soils of southwest Bangladesh irrigated with arsenic contaminated water.
    Martin M; Violante A; Barberis E
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Oct; 42(12):1775-83. PubMed ID: 17952778
    [TBL] [Abstract][Full Text] [Related]  

  • 69. An optimised sequential extraction scheme for the evaluation of vanadium mobility in soils.
    Xu YH; Huang JH; Brandl H
    J Environ Sci (China); 2017 Mar; 53():173-183. PubMed ID: 28372742
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Competitive and cooperative adsorption of arsenate and citrate on goethite.
    Shi R; Jia Y; Wang C
    J Environ Sci (China); 2009; 21(1):106-12. PubMed ID: 19402408
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Arsenic fractionation and bioaccessibility in two alkaline Texas soils incubated with sodium arsenate.
    Datta R; Makris KC; Sarkar D
    Arch Environ Contam Toxicol; 2007 May; 52(4):475-82. PubMed ID: 17387422
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Mercury fractionation in tropical soils: A critical point of view.
    Vasques ICF; Egreja Filho FB; Morais EG; Lima FRD; Oliveira JR; Pereira P; Guilherme LRG; Marques JJ
    Chemosphere; 2020 Oct; 257():127114. PubMed ID: 32480084
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Distribution and fractionation of copper in soils of apple orchards.
    Li W; Zhang M; Shu H
    Environ Sci Pollut Res Int; 2005; 12(3):168-72. PubMed ID: 15987001
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Adsorption of phthalic acid and salicylic acid and their effect on exchangeable Al capacity of variable-charge soils.
    Li J; Xu R
    J Colloid Interface Sci; 2007 Feb; 306(1):3-10. PubMed ID: 17095003
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Organic matter facilitates the binding of Pb to iron oxides in a subtropical contaminated soil.
    Wan D; Zhang N; Chen W; Cai P; Zheng L; Huang Q
    Environ Sci Pollut Res Int; 2018 Nov; 25(32):32130-32139. PubMed ID: 30218340
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Nitrate reduced arsenic redox transformation and transfer in flooded paddy soil-rice system.
    Lin Z; Wang X; Wu X; Liu D; Yin Y; Zhang Y; Xiao S; Xing B
    Environ Pollut; 2018 Dec; 243(Pt B):1015-1025. PubMed ID: 30248601
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The role of soil organic matters and minerals on hydrogen peroxide decomposition in the soil.
    Molamahmood HV; Qin J; Zhu Y; Deng M; Long M
    Chemosphere; 2020 Jun; 249():126146. PubMed ID: 32086061
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Sorption of 2,4-d on natural and organic amended soils of different characteristics.
    Rodríguez-Rubio P; Morillo E; Maqueda C
    J Environ Sci Health B; 2006; 41(2):145-57. PubMed ID: 16393902
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Spatial and temporal variability of arsenic solid-state speciation in historically lead arsenate contaminated soils.
    Arai Y; Lanzirotti A; Sutton SR; Newville M; Dyer J; Sparks DL
    Environ Sci Technol; 2006 Feb; 40(3):673-9. PubMed ID: 16509302
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Comparison of different sequential extraction procedures for mercury fractionation in polluted soils.
    Dong H; Feng L; Qin Y; Luo M
    Environ Sci Pollut Res Int; 2019 Apr; 26(10):9955-9965. PubMed ID: 30737719
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.