These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 32632593)

  • 1. Kinetics of Chemical Processes in the Human Brain. The Cholinergic Synapse-Mechanisms of Functioning and Control Methods.
    Varfolomeev SD; Bykov VI; Tsybenova SB
    Dokl Biochem Biophys; 2020 May; 492(1):147-151. PubMed ID: 32632593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of Chemical Processes in the Human Brain. Proton Blockade of Acetylcholinesterase and pH-Impulse in the Mechanism of Functioning of the Cholinergic Synapse.
    Varfolomeev SD; Bykov VI; Tsybenova SB
    Dokl Biochem Biophys; 2020 Mar; 491(1):85-88. PubMed ID: 32483758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Postsynaptic Calcium Extrusion at the Mouse Neuromuscular Junction Alkalinizes the Synaptic Cleft.
    Durbin RJ; Heredia DJ; Gould TW; Renden RB
    J Neurosci; 2023 Aug; 43(32):5741-5752. PubMed ID: 37474311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accumulation of acetylcholine receptors and acetylcholinesterase at newly formed nerve-muscle synapses.
    Fischbach GD; Frank E; Jessell TM; Rubin LL; Schuetze SM
    Pharmacol Rev; 1978 Dec; 30(4):411-28. PubMed ID: 392537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite element simulations of acetylcholine diffusion in neuromuscular junctions.
    Tai K; Bond SD; MacMillan HR; Baker NA; Holst MJ; McCammon JA
    Biophys J; 2003 Apr; 84(4):2234-41. PubMed ID: 12668432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Response augmentation and blockade in cholinergic neuromuscular tissues.
    Friess SL
    Neurosci Res (N Y); 1969; 2(0):203-28. PubMed ID: 4152426
    [No Abstract]   [Full Text] [Related]  

  • 7. Probing the cholinergic system to understand neurodegenerative diseases.
    Renard PY; Jean L
    Future Med Chem; 2017 Jan; 9(2):131-133. PubMed ID: 28097893
    [No Abstract]   [Full Text] [Related]  

  • 8. Continuum simulations of acetylcholine diffusion with reaction-determined boundaries in neuromuscular junction models.
    Cheng Y; Suen JK; Radić Z; Bond SD; Holst MJ; McCammon JA
    Biophys Chem; 2007 May; 127(3):129-39. PubMed ID: 17307283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The reconstruction of the dynamics of acetylcholine concentration in synaptic cleft in response to a monoquantum signal].
    Skorinkin AI; Shaĭkhutdinova AR
    Biofizika; 2004; 49(5):872-6. PubMed ID: 15526473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preface: Cholinergic mechanisms: This is the Preface for the special issue "Cholinergic Mechanisms".
    Anglister L; Silman I; Soreq H
    J Neurochem; 2021 Sep; 158(6):1212-1216. PubMed ID: 34458988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Influence of modeling of gravitational unloading on the postsynaptic acetylcholine receptor organization and acetylcholinesterase activity in neuromuscular synapses of rat fast and slow muscles].
    Tiapkina OV; Nurullin LF; Petrov KA; Volkov EM
    Tsitologiia; 2014; 56(10):758-62. PubMed ID: 25711085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strategies to resolve the catalytic mechanism of acetylcholinesterase.
    Rosenberry TL
    J Mol Neurosci; 2010 Jan; 40(1-2):32-9. PubMed ID: 19757206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The three-finger toxin fold: a multifunctional structural scaffold able to modulate cholinergic functions.
    Kessler P; Marchot P; Silva M; Servent D
    J Neurochem; 2017 Aug; 142 Suppl 2():7-18. PubMed ID: 28326549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Congenital myasthenic syndromes with acetylcholinesterase deficiency, the pathophysiological mechanisms.
    Legay C
    Ann N Y Acad Sci; 2018 Feb; 1413(1):104-110. PubMed ID: 29405353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative simulation of endplate currents at neuromuscular junctions based on the reaction of acetylcholine with acetylcholine receptor and acetylcholinesterase.
    Rosenberry TL
    Biophys J; 1979 May; 26(2):263-89. PubMed ID: 262418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular interactions at the cholinergic receptor in neuromuscular blockade.
    Stenlake JB
    Prog Med Chem; 1979; 16():257-86. PubMed ID: 400617
    [No Abstract]   [Full Text] [Related]  

  • 17. [Does desensitisation of acetylcholine receptors play a physiological role in the neuromuscular synapse?].
    Giniatullin RA; Magazanik LG
    Ross Fiziol Zh Im I M Sechenova; 1998; 84(1-2):3-14. PubMed ID: 9612851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of synaptic transmission in the neuromuscular junction using a continuum finite element model.
    Smart JL; McCammon JA
    Biophys J; 1998 Oct; 75(4):1679-88. PubMed ID: 9746510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synaptic remodeling at the skeletal neuromuscular junction of acetylcholinesterase knockout mice and its physiological relevance.
    Girard E; Barbier J; Chatonnet A; Krejci E; Molgó J
    Chem Biol Interact; 2005 Dec; 157-158():87-96. PubMed ID: 16274683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acetylcholinesterase mobility and stability at the neuromuscular junction of living mice.
    Martinez-Pena y Valenzuela I; Akaaboune M
    Mol Biol Cell; 2007 Aug; 18(8):2904-11. PubMed ID: 17538015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.