BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 32633102)

  • 1. Long-term in vivo integrity and safety of 3D-bioprinted cartilaginous constructs.
    Apelgren P; Amoroso M; Säljö K; Lindahl A; Brantsing C; Stridh Orrhult L; Markstedt K; Gatenholm P; Kölby L
    J Biomed Mater Res B Appl Biomater; 2021 Jan; 109(1):126-136. PubMed ID: 32633102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chondrocytes and stem cells in 3D-bioprinted structures create human cartilage in vivo.
    Apelgren P; Amoroso M; Lindahl A; Brantsing C; Rotter N; Gatenholm P; Kölby L
    PLoS One; 2017; 12(12):e0189428. PubMed ID: 29236765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scaffold-free bioprinted osteogenic and chondrogenic systems to model osteochondral physiology.
    Breathwaite EK; Weaver JR; Murchison AC; Treadwell ML; Odanga JJ; Lee JB
    Biomed Mater; 2019 Oct; 14(6):065010. PubMed ID: 31491773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-material 3D bioprinting of porous constructs for cartilage regeneration.
    Ruiz-Cantu L; Gleadall A; Faris C; Segal J; Shakesheff K; Yang J
    Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110578. PubMed ID: 32228894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analyzing Biological Performance of 3D-Printed, Cell-Impregnated Hybrid Constructs for Cartilage Tissue Engineering.
    Izadifar Z; Chang T; Kulyk W; Chen X; Eames BF
    Tissue Eng Part C Methods; 2016 Mar; 22(3):173-88. PubMed ID: 26592915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cartilaginous tissue formation using a mechano-active scaffold and dynamic compressive stimulation.
    Jung Y; Kim SH; Kim SH; Kim YH; Xie J; Matsuda T; Min BG
    J Biomater Sci Polym Ed; 2008; 19(1):61-74. PubMed ID: 18177554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications.
    Xu T; Binder KW; Albanna MZ; Dice D; Zhao W; Yoo JJ; Atala A
    Biofabrication; 2013 Mar; 5(1):015001. PubMed ID: 23172542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of mechanical stiffness and cell density of 3D bioprinted cell-laden scaffolds improves extracellular matrix mineralization and cellular organization for bone tissue engineering.
    Zhang J; Wehrle E; Adamek P; Paul GR; Qin XH; Rubert M; Müller R
    Acta Biomater; 2020 Sep; 114():307-322. PubMed ID: 32673752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inducing ossification in an engineered 3D scaffold-free living cartilage template.
    Lau TT; Lee LQ; Vo BN; Su K; Wang DA
    Biomaterials; 2012 Nov; 33(33):8406-17. PubMed ID: 22925815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D bioprinting mesenchymal stem cell-laden construct with core-shell nanospheres for cartilage tissue engineering.
    Zhu W; Cui H; Boualam B; Masood F; Flynn E; Rao RD; Zhang ZY; Zhang LG
    Nanotechnology; 2018 May; 29(18):185101. PubMed ID: 29446757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Scaffold Free 3D Bioprinted Cartilage Model for In Vitro Toxicology.
    Datta P; Wu Y; Yu Y; Moncal KK; Ozbolat IT
    Methods Mol Biol; 2021; 2147():175-183. PubMed ID: 32840820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D bioprinting of cartilaginous templates for large bone defect healing.
    Pitacco P; Sadowska JM; O'Brien FJ; Kelly DJ
    Acta Biomater; 2023 Jan; 156():61-74. PubMed ID: 35907556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Osteogenic Differentiation of Three-Dimensional Bioprinted Constructs Consisting of Human Adipose-Derived Stem Cells In Vitro and In Vivo.
    Wang XF; Song Y; Liu YS; Sun YC; Wang YG; Wang Y; Lyu PJ
    PLoS One; 2016; 11(6):e0157214. PubMed ID: 27332814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D bioprinting of photo-crosslinkable silk methacrylate (SilMA)-polyethylene glycol diacrylate (PEGDA) bioink for cartilage tissue engineering.
    Bandyopadhyay A; Mandal BB; Bhardwaj N
    J Biomed Mater Res A; 2022 Apr; 110(4):884-898. PubMed ID: 34913587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Traditional Invasive and Synchrotron-Based Noninvasive Assessments of Three-Dimensional-Printed Hybrid Cartilage Constructs In Situ.
    Olubamiji AD; Zhu N; Chang T; Nwankwo CK; Izadifar Z; Honaramooz A; Chen X; Eames BF
    Tissue Eng Part C Methods; 2017 Mar; 23(3):156-168. PubMed ID: 28106517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Experimental study on tissue engineered cartilage constructed by three-dimensional bioprinted human adipose-derived stem cells combined with gelatin methacryloyl].
    Mu L; Zeng J; Huang Y; Lin Y; Jiang H; Teng L
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2021 Jul; 35(7):896-903. PubMed ID: 34308600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Double-Network Hydrogels Including Enzymatically Crosslinked Poly-(2-alkyl-2-oxazoline)s for 3D Bioprinting of Cartilage-Engineering Constructs.
    Trachsel L; Johnbosco C; Lang T; Benetti EM; Zenobi-Wong M
    Biomacromolecules; 2019 Dec; 20(12):4502-4511. PubMed ID: 31714750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D printing of fibre-reinforced cartilaginous templates for the regeneration of osteochondral defects.
    Critchley S; Sheehy EJ; Cunniffe G; Diaz-Payno P; Carroll SF; Jeon O; Alsberg E; Brama PAJ; Kelly DJ
    Acta Biomater; 2020 Sep; 113():130-143. PubMed ID: 32505800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D-Bioprinted Difunctional Scaffold for In Situ Cartilage Regeneration Based on Aptamer-Directed Cell Recruitment and Growth Factor-Enhanced Cell Chondrogenesis.
    Yang Z; Zhao T; Gao C; Cao F; Li H; Liao Z; Fu L; Li P; Chen W; Sun Z; Jiang S; Tian Z; Tian G; Zha K; Pan T; Li X; Sui X; Yuan Z; Liu S; Guo Q
    ACS Appl Mater Interfaces; 2021 May; 13(20):23369-23383. PubMed ID: 33979130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D Bioprinting Using Cross-Linker-Free Silk-Gelatin Bioink for Cartilage Tissue Engineering.
    Singh YP; Bandyopadhyay A; Mandal BB
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):33684-33696. PubMed ID: 31453678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.