BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 32633481)

  • 1. High Molecular Weight Polyacrylonitrile Precursor for S@pPAN Composite Cathode Materials with High Specific Capacity for Rechargeable Lithium Batteries.
    Lei J; Chen J; Zhang H; Naveed A; Yang J; Nuli Y; Wang J
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):33702-33709. PubMed ID: 32633481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A pyrolyzed polyacrylonitrile/selenium disulfide composite cathode with remarkable lithium and sodium storage performances.
    Li Z; Zhang J; Lu Y; Lou XWD
    Sci Adv; 2018 Jun; 4(6):eaat1687. PubMed ID: 29888331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prospect of Sulfurized Pyrolyzed Poly(acrylonitrile) (S@pPAN) Cathode Materials for Rechargeable Lithium Batteries.
    Yang H; Chen J; Yang J; Wang J
    Angew Chem Int Ed Engl; 2020 May; 59(19):7306-7318. PubMed ID: 31713966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hierarchical sulfur-based cathode materials with long cycle life for rechargeable lithium batteries.
    Wang J; Yin L; Jia H; Yu H; He Y; Yang J; Monroe CW
    ChemSusChem; 2014 Feb; 7(2):563-9. PubMed ID: 24155121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selenium-Doped Sulfurized Polyacrylonitrile Hybrid Cathodes with Ultrahigh Sulfur Content for High-Performance Solid-State Lithium Sulfur Batteries.
    Ma S; Yu Z; Wang L; Zuo P
    Langmuir; 2024 Apr; 40(17):9255-9264. PubMed ID: 38630628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sulfur-based composite cathode materials for high-energy rechargeable lithium batteries.
    Wang J; He YS; Yang J
    Adv Mater; 2015 Jan; 27(3):569-75. PubMed ID: 25256595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of a Flexible Freestanding Sulfur/Polyacrylonitrile/Graphene Oxide as the Cathode for Lithium/Sulfur Batteries.
    Peng H; Wang X; Zhao Y; Tan T; Bakenov Z; Zhang Y
    Polymers (Basel); 2018 Apr; 10(4):. PubMed ID: 30966434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon Wrapping Effect on Sulfur/Polyacrylonitrile Composite Cathode Materials for Lithium Sulfur Batteries.
    Krishnaveni K; Subadevi R; Radhika G; Premkumar T; Raja M; Liu WR; Sivakumar M
    J Nanosci Nanotechnol; 2018 Jan; 18(1):121-126. PubMed ID: 29768823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly Reversible Lithium-Metal Anode and Lithium-Sulfur Batteries Enabled by an Intrinsic Safe Electrolyte.
    Chen J; Yang H; Zhang X; Lei J; Zhang H; Yuan H; Yang J; Nuli Y; Wang J
    ACS Appl Mater Interfaces; 2019 Sep; 11(36):33419-33427. PubMed ID: 31423761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-mode sulfur-based cathode materials for rechargeable Li-S batteries.
    Yin L; Wang J; Yu X; Monroe CW; NuLi Y; Yang J
    Chem Commun (Camb); 2012 Aug; 48(63):7868-70. PubMed ID: 22785430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical Behaviors of Sulfurized-Polyacrylonitrile with Synthesized Polyacrylonitrile Precursors Based on the Radical Polymerization Through Monomer Acrylonitrile.
    Peng SH; Yao SS; Xue SK; Qian XY; Shen XQ; Li TB; Tan JL
    J Nanosci Nanotechnol; 2020 Mar; 20(3):1578-1588. PubMed ID: 31492320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ternary Sulfur/Polyacrylonitrile/SiO₂ Composite Cathodes for High-Performance Sulfur/Lithium Ion Full Batteries.
    He Y; Shan Z; Tan T; Chen Z; Zhang Y
    Polymers (Basel); 2018 Aug; 10(8):. PubMed ID: 30960855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superior rate capability of a sulfur composite cathode in a tris(trimethylsilyl)borate-containing functional electrolyte.
    Wang L; Li Q; Yang H; Yang J; Nuli Y; Wang J
    Chem Commun (Camb); 2016 Dec; 52(100):14430-14433. PubMed ID: 27901523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A high performance lithium-ion-sulfur battery with a free-standing carbon matrix supported Li-rich alloy anode.
    Zhang T; Hong M; Yang J; Xu Z; Wang J; Guo Y; Liang C
    Chem Sci; 2018 Dec; 9(47):8829-8835. PubMed ID: 30627400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microporous Carbon Polyhedrons Encapsulated Polyacrylonitrile Nanofibers as Sulfur Immobilizer for Lithium-Sulfur Battery.
    Zhang YZ; Wu ZZ; Pan GL; Liu S; Gao XP
    ACS Appl Mater Interfaces; 2017 Apr; 9(14):12436-12444. PubMed ID: 28322551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical Properties of Sulfurized-Polyacrylonitrile Cathode for Lithium-Sulfur Batteries: Effect of Polyacrylic Acid Binder and Fluoroethylene Carbonate Additive.
    Kim HM; Hwang JY; Aurbach D; Sun YK
    J Phys Chem Lett; 2017 Nov; 8(21):5331-5337. PubMed ID: 29039678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Nickel Coated Multi-Walled Carbon Nanotubes on Electrochemical Performance of Lithium-Sulfur Rechargeable Batteries.
    Wu X; Yao S; Hou J; Jing M; Qian X; Shen X; Xiang J; Xi X
    J Nanosci Nanotechnol; 2017 Apr; 17(4):2482-487. PubMed ID: 29648771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering Bifunctional Host Materials of Sulfur and Lithium-Metal Based on Nitrogen-Enriched Polyacrylonitrile for Li-S Batteries.
    Dai Z; Wang M; Zhang Y; Wang B; Luo H; Zhang X; Wang Q; Zhang Y; Wu H
    Chemistry; 2020 Jul; 26(40):8784-8793. PubMed ID: 32583913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new ether-based electrolyte for lithium sulfur batteries using a S@pPAN cathode.
    Zhou J; Guo Y; Liang C; Cao L; Pan H; Yang J; Wang J
    Chem Commun (Camb); 2018 May; 54(43):5478-5481. PubMed ID: 29756149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual additive of lithium titanate and sulfurized pyrolyzed polyacrylonitrile in sulfur cathode for high rate performance in lithium-sulfur battery.
    Takemoto K; Wakasugi J; Kubota M; Kanamura K; Abe H
    Phys Chem Chem Phys; 2022 Dec; 25(1):351-358. PubMed ID: 36477769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.