These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 32633481)
1. High Molecular Weight Polyacrylonitrile Precursor for S@pPAN Composite Cathode Materials with High Specific Capacity for Rechargeable Lithium Batteries. Lei J; Chen J; Zhang H; Naveed A; Yang J; Nuli Y; Wang J ACS Appl Mater Interfaces; 2020 Jul; 12(30):33702-33709. PubMed ID: 32633481 [TBL] [Abstract][Full Text] [Related]
2. A pyrolyzed polyacrylonitrile/selenium disulfide composite cathode with remarkable lithium and sodium storage performances. Li Z; Zhang J; Lu Y; Lou XWD Sci Adv; 2018 Jun; 4(6):eaat1687. PubMed ID: 29888331 [TBL] [Abstract][Full Text] [Related]
3. Prospect of Sulfurized Pyrolyzed Poly(acrylonitrile) (S@pPAN) Cathode Materials for Rechargeable Lithium Batteries. Yang H; Chen J; Yang J; Wang J Angew Chem Int Ed Engl; 2020 May; 59(19):7306-7318. PubMed ID: 31713966 [TBL] [Abstract][Full Text] [Related]
4. Hierarchical sulfur-based cathode materials with long cycle life for rechargeable lithium batteries. Wang J; Yin L; Jia H; Yu H; He Y; Yang J; Monroe CW ChemSusChem; 2014 Feb; 7(2):563-9. PubMed ID: 24155121 [TBL] [Abstract][Full Text] [Related]
5. Selenium-Doped Sulfurized Polyacrylonitrile Hybrid Cathodes with Ultrahigh Sulfur Content for High-Performance Solid-State Lithium Sulfur Batteries. Ma S; Yu Z; Wang L; Zuo P Langmuir; 2024 Apr; 40(17):9255-9264. PubMed ID: 38630628 [TBL] [Abstract][Full Text] [Related]
6. Sulfur-based composite cathode materials for high-energy rechargeable lithium batteries. Wang J; He YS; Yang J Adv Mater; 2015 Jan; 27(3):569-75. PubMed ID: 25256595 [TBL] [Abstract][Full Text] [Related]
7. Synthesis of a Flexible Freestanding Sulfur/Polyacrylonitrile/Graphene Oxide as the Cathode for Lithium/Sulfur Batteries. Peng H; Wang X; Zhao Y; Tan T; Bakenov Z; Zhang Y Polymers (Basel); 2018 Apr; 10(4):. PubMed ID: 30966434 [TBL] [Abstract][Full Text] [Related]
8. Carbon Wrapping Effect on Sulfur/Polyacrylonitrile Composite Cathode Materials for Lithium Sulfur Batteries. Krishnaveni K; Subadevi R; Radhika G; Premkumar T; Raja M; Liu WR; Sivakumar M J Nanosci Nanotechnol; 2018 Jan; 18(1):121-126. PubMed ID: 29768823 [TBL] [Abstract][Full Text] [Related]
9. Highly Reversible Lithium-Metal Anode and Lithium-Sulfur Batteries Enabled by an Intrinsic Safe Electrolyte. Chen J; Yang H; Zhang X; Lei J; Zhang H; Yuan H; Yang J; Nuli Y; Wang J ACS Appl Mater Interfaces; 2019 Sep; 11(36):33419-33427. PubMed ID: 31423761 [TBL] [Abstract][Full Text] [Related]
10. Dual-mode sulfur-based cathode materials for rechargeable Li-S batteries. Yin L; Wang J; Yu X; Monroe CW; NuLi Y; Yang J Chem Commun (Camb); 2012 Aug; 48(63):7868-70. PubMed ID: 22785430 [TBL] [Abstract][Full Text] [Related]
11. Electrochemical Behaviors of Sulfurized-Polyacrylonitrile with Synthesized Polyacrylonitrile Precursors Based on the Radical Polymerization Through Monomer Acrylonitrile. Peng SH; Yao SS; Xue SK; Qian XY; Shen XQ; Li TB; Tan JL J Nanosci Nanotechnol; 2020 Mar; 20(3):1578-1588. PubMed ID: 31492320 [TBL] [Abstract][Full Text] [Related]
12. Ternary Sulfur/Polyacrylonitrile/SiO₂ Composite Cathodes for High-Performance Sulfur/Lithium Ion Full Batteries. He Y; Shan Z; Tan T; Chen Z; Zhang Y Polymers (Basel); 2018 Aug; 10(8):. PubMed ID: 30960855 [TBL] [Abstract][Full Text] [Related]
13. Superior rate capability of a sulfur composite cathode in a tris(trimethylsilyl)borate-containing functional electrolyte. Wang L; Li Q; Yang H; Yang J; Nuli Y; Wang J Chem Commun (Camb); 2016 Dec; 52(100):14430-14433. PubMed ID: 27901523 [TBL] [Abstract][Full Text] [Related]
14. A high performance lithium-ion-sulfur battery with a free-standing carbon matrix supported Li-rich alloy anode. Zhang T; Hong M; Yang J; Xu Z; Wang J; Guo Y; Liang C Chem Sci; 2018 Dec; 9(47):8829-8835. PubMed ID: 30627400 [TBL] [Abstract][Full Text] [Related]
15. Microporous Carbon Polyhedrons Encapsulated Polyacrylonitrile Nanofibers as Sulfur Immobilizer for Lithium-Sulfur Battery. Zhang YZ; Wu ZZ; Pan GL; Liu S; Gao XP ACS Appl Mater Interfaces; 2017 Apr; 9(14):12436-12444. PubMed ID: 28322551 [TBL] [Abstract][Full Text] [Related]
16. Electrochemical Properties of Sulfurized-Polyacrylonitrile Cathode for Lithium-Sulfur Batteries: Effect of Polyacrylic Acid Binder and Fluoroethylene Carbonate Additive. Kim HM; Hwang JY; Aurbach D; Sun YK J Phys Chem Lett; 2017 Nov; 8(21):5331-5337. PubMed ID: 29039678 [TBL] [Abstract][Full Text] [Related]
17. Effect of Nickel Coated Multi-Walled Carbon Nanotubes on Electrochemical Performance of Lithium-Sulfur Rechargeable Batteries. Wu X; Yao S; Hou J; Jing M; Qian X; Shen X; Xiang J; Xi X J Nanosci Nanotechnol; 2017 Apr; 17(4):2482-487. PubMed ID: 29648771 [TBL] [Abstract][Full Text] [Related]
18. Engineering Bifunctional Host Materials of Sulfur and Lithium-Metal Based on Nitrogen-Enriched Polyacrylonitrile for Li-S Batteries. Dai Z; Wang M; Zhang Y; Wang B; Luo H; Zhang X; Wang Q; Zhang Y; Wu H Chemistry; 2020 Jul; 26(40):8784-8793. PubMed ID: 32583913 [TBL] [Abstract][Full Text] [Related]
19. A new ether-based electrolyte for lithium sulfur batteries using a S@pPAN cathode. Zhou J; Guo Y; Liang C; Cao L; Pan H; Yang J; Wang J Chem Commun (Camb); 2018 May; 54(43):5478-5481. PubMed ID: 29756149 [TBL] [Abstract][Full Text] [Related]
20. Dual additive of lithium titanate and sulfurized pyrolyzed polyacrylonitrile in sulfur cathode for high rate performance in lithium-sulfur battery. Takemoto K; Wakasugi J; Kubota M; Kanamura K; Abe H Phys Chem Chem Phys; 2022 Dec; 25(1):351-358. PubMed ID: 36477769 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]