These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 32633481)
81. Sulfur Embedded in a Mesoporous Carbon Nanotube Network as a Binder-Free Electrode for High-Performance Lithium-Sulfur Batteries. Sun L; Wang D; Luo Y; Wang K; Kong W; Wu Y; Zhang L; Jiang K; Li Q; Zhang Y; Wang J; Fan S ACS Nano; 2016 Jan; 10(1):1300-8. PubMed ID: 26695394 [TBL] [Abstract][Full Text] [Related]
82. Sulfur in Hyper-cross-linked Porous Polymer as Cathode in Lithium-Sulfur Batteries with Enhanced Electrochemical Properties. Zeng JH; Wang YF; Gou SQ; Zhang LP; Chen Y; Jiang JX; Shi F ACS Appl Mater Interfaces; 2017 Oct; 9(40):34783-34792. PubMed ID: 28906101 [TBL] [Abstract][Full Text] [Related]
83. High-Performance Sulfurized Polyacrylonitrile Cathode by Using MXene as a Conductive and Catalytic Binder for Room-Temperature Na/S Batteries. Sun T; Wang S; Xu M; Qiao N; Zhu Q; Xu B ACS Appl Mater Interfaces; 2024 Feb; 16(8):10093-10103. PubMed ID: 38359415 [TBL] [Abstract][Full Text] [Related]
84. Cerium Oxide Nanocrystal Embedded Bimodal Micromesoporous Nitrogen-Rich Carbon Nanospheres as Effective Sulfur Host for Lithium-Sulfur Batteries. Ma L; Chen R; Zhu G; Hu Y; Wang Y; Chen T; Liu J; Jin Z ACS Nano; 2017 Jul; 11(7):7274-7283. PubMed ID: 28682589 [TBL] [Abstract][Full Text] [Related]
85. Electrolyte Regulation towards Stable Lithium-Metal Anodes in Lithium-Sulfur Batteries with Sulfurized Polyacrylonitrile Cathodes. Chen WJ; Li BQ; Zhao CX; Zhao M; Yuan TQ; Sun RC; Huang JQ; Zhang Q Angew Chem Int Ed Engl; 2020 Jun; 59(27):10732-10745. PubMed ID: 31746521 [TBL] [Abstract][Full Text] [Related]
86. Lithium-sulfur batteries based on nitrogen-doped carbon and an ionic-liquid electrolyte. Sun XG; Wang X; Mayes RT; Dai S ChemSusChem; 2012 Oct; 5(10):2079-85. PubMed ID: 22847977 [TBL] [Abstract][Full Text] [Related]
87. Performance Enhancement of a Sulfur/Carbon Cathode by Polydopamine as an Efficient Shell for High-Performance Lithium-Sulfur Batteries. Zhang X; Xie D; Zhong Y; Wang D; Wu J; Wang X; Xia X; Gu C; Tu J Chemistry; 2017 Aug; 23(44):10610-10615. PubMed ID: 28580678 [TBL] [Abstract][Full Text] [Related]
88. Lamellar Polypyrene Based on Attapulgite-Sulfur Composite for Lithium-Sulfur Battery. Wang J; Xu R; Wang C; Xiong J Membranes (Basel); 2021 Jun; 11(7):. PubMed ID: 34209570 [TBL] [Abstract][Full Text] [Related]
89. A scalable graphene sulfur composite synthesis for rechargeable lithium batteries with good capacity and excellent columbic efficiency. Gao X; Li J; Guan D; Yuan C ACS Appl Mater Interfaces; 2014 Mar; 6(6):4154-9. PubMed ID: 24555988 [TBL] [Abstract][Full Text] [Related]
90. Toward More Reliable Lithium-Sulfur Batteries: An All-Graphene Cathode Structure. Fang R; Zhao S; Pei S; Qian X; Hou PX; Cheng HM; Liu C; Li F ACS Nano; 2016 Sep; 10(9):8676-82. PubMed ID: 27537348 [TBL] [Abstract][Full Text] [Related]
91. Compactly Coupled Nitrogen-Doped Carbon Nanosheets/Molybdenum Phosphide Nanocrystal Hollow Nanospheres as Polysulfide Reservoirs for High-Performance Lithium-Sulfur Chemistry. Sun Z; Wu XL; Peng Z; Wang J; Gan S; Zhang Y; Han D; Niu L Small; 2019 Oct; 15(40):e1902491. PubMed ID: 31379137 [TBL] [Abstract][Full Text] [Related]
92. Stabilization of Li-Se Batteries by Wearing PAN Protective Clothing. Yang Z; Zhu K; Dong Z; Jia D; Jiao L ACS Appl Mater Interfaces; 2019 Oct; 11(43):40069-40077. PubMed ID: 31580051 [TBL] [Abstract][Full Text] [Related]
93. Strong Capillarity, Chemisorption, and Electrocatalytic Capability of Crisscrossed Nanostraws Enabled Flexible, High-Rate, and Long-Cycling Lithium-Sulfur Batteries. Ma L; Zhang W; Wang L; Hu Y; Zhu G; Wang Y; Chen R; Chen T; Tie Z; Liu J; Jin Z ACS Nano; 2018 May; 12(5):4868-4876. PubMed ID: 29683639 [TBL] [Abstract][Full Text] [Related]
94. Aspergillus flavus Conidia-derived Carbon/Sulfur Composite as a Cathode Material for High Performance Lithium-Sulfur Battery. Xu M; Jia M; Mao C; Liu S; Bao S; Jiang J; Liu Y; Lu Z Sci Rep; 2016 Jan; 6():18739. PubMed ID: 26732547 [TBL] [Abstract][Full Text] [Related]
95. Biomass-derived, activated carbon-sulfur composite cathode with a bifunctional interlayer of functionalized carbon nanotubes for lithium-sulfur cells. Manoj M; Muhamed Ashraf C; Jasna M; Anilkumar KM; Jinisha B; Pradeep VS; Jayalekshmi S J Colloid Interface Sci; 2019 Feb; 535():287-299. PubMed ID: 30316115 [TBL] [Abstract][Full Text] [Related]
96. Enabling High-Rate and Safe Lithium Ion-Sulfur Batteries by Effective Combination of Sulfur-Copolymer Cathode and Hard-Carbon Anode. Nguyen DT; Hoefling A; Yee M; Nguyen GTH; Theato P; Lee YJ; Song SW ChemSusChem; 2019 Jan; 12(2):480-486. PubMed ID: 30479038 [TBL] [Abstract][Full Text] [Related]
97. A Highly Conductive MOF of Graphene Analogue Ni Cai D; Lu M; Li L; Cao J; Chen D; Tu H; Li J; Han W Small; 2019 Oct; 15(44):e1902605. PubMed ID: 31518060 [TBL] [Abstract][Full Text] [Related]
98. Vanadium Dioxide-Graphene Composite with Ultrafast Anchoring Behavior of Polysulfides for Lithium-Sulfur Batteries. Song Y; Zhao W; Zhu X; Zhang L; Li Q; Ding F; Liu Z; Sun J ACS Appl Mater Interfaces; 2018 May; 10(18):15733-15741. PubMed ID: 29688693 [TBL] [Abstract][Full Text] [Related]
99. New Insights into the N-S Bond Formation of a Sulfurized-Polyacrylonitrile Cathode Material for Lithium-Sulfur Batteries. Huang CJ; Lin KY; Hsieh YC; Su WN; Wang CH; Brunklaus G; Winter M; Jiang JC; Hwang BJ ACS Appl Mater Interfaces; 2021 Mar; 13(12):14230-14238. PubMed ID: 33750110 [TBL] [Abstract][Full Text] [Related]
100. Influence of morphology of monolithic sulfur-poly(acrylonitrile) composites used as cathode materials in lithium-sulfur batteries on electrochemical performance. Lebherz T; Frey M; Hintennach A; Buchmeiser MR RSC Adv; 2019 Mar; 9(13):7181-7188. PubMed ID: 35519970 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]