These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 32634095)

  • 1. Cursor Click Modality in an Accelerometer-Based Computer Access Device.
    Groll MD; Hablani S; Vojtech JM; Stepp CE
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jul; 28(7):1566-1572. PubMed ID: 32634095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated Head-Tilt and Electromyographic Cursor Control.
    Vojtech JM; Hablani S; Cler GJ; Stepp CE
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jun; 28(6):1442-1451. PubMed ID: 32286998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Case study: Head orientation and neck electromyography for cursor control in persons with high cervical tetraplegia.
    Williams MR; Kirsch RF
    J Rehabil Res Dev; 2016; 53(4):519-30. PubMed ID: 27532681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated electromyogram and eye-gaze tracking cursor control system for computer users with motor disabilities.
    Chin CA; Barreto A; Cremades JG; Adjouadi M
    J Rehabil Res Dev; 2008; 45(1):161-74. PubMed ID: 18566935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tooth-click control of a hands-free computer interface.
    Simpson T; Broughton C; Gauthier MJ; Prochazka A
    IEEE Trans Biomed Eng; 2008 Aug; 55(8):2050-6. PubMed ID: 18632367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.
    Trejo LJ; Rosipal R; Matthews B
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The integration of electromyogram and eye gaze tracking inputs for hands-free cursor control.
    Chin CA; Barreto A
    Biomed Sci Instrum; 2007; 43():152-7. PubMed ID: 17487073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Point-and-click cursor control with an intracortical neural interface system by humans with tetraplegia.
    Kim SP; Simeral JD; Hochberg LR; Donoghue JP; Friehs GM; Black MJ
    IEEE Trans Neural Syst Rehabil Eng; 2011 Apr; 19(2):193-203. PubMed ID: 21278024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of head orientation and neck muscle EMG signals as command inputs to a human-computer interface for individuals with high tetraplegia.
    Williams MR; Kirsch RF
    IEEE Trans Neural Syst Rehabil Eng; 2008 Oct; 16(5):485-96. PubMed ID: 18990652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An SEMG computer interface using three myoelectric sites for proportional two-dimensional cursor motion control and clicking for individuals with spinal cord injuries.
    Choi C; Na Y; Rim B; Kim Y; Kang S; Kim J
    Med Eng Phys; 2013 Jun; 35(6):777-83. PubMed ID: 22939517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conversion of EEG activity into cursor movement by a brain-computer interface (BCI).
    Fabiani GE; McFarland DJ; Wolpaw JR; Pfurtscheller G
    IEEE Trans Neural Syst Rehabil Eng; 2004 Sep; 12(3):331-8. PubMed ID: 15473195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Target selection with hybrid feature for BCI-based 2-D cursor control.
    Long J; Li Y; Yu T; Gu Z
    IEEE Trans Biomed Eng; 2012 Jan; 59(1):132-40. PubMed ID: 21926016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced hybrid electromyogram/Eye Gaze Tracking cursor control system for hands-free computer interaction.
    Chin CA; Barreto A
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2296-9. PubMed ID: 17946102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Joystick acquisition in tufted capuchins (Cebus apella).
    Leighty KA; Fragaszy DM
    Anim Cogn; 2003 Sep; 6(3):141-8. PubMed ID: 12838395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of tooth-click triggering and speech recognition in assistive technology for computer access.
    Simpson T; Gauthier M; Prochazka A
    Neurorehabil Neural Repair; 2010 Feb; 24(2):188-94. PubMed ID: 19679651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced real-time cursor control algorithm, based on the spectral analysis of electromyograms.
    Chin CA; Barreto A; Adjouadi M
    Biomed Sci Instrum; 2006; 42():249-54. PubMed ID: 16817616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A P300-based BCI system for controlling computer cursor movement.
    Kanoh S; Miyamoto K; Yoshinobu T
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6405-8. PubMed ID: 22255804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of the performance of trackpoint and touchpads with varied right and left buttons function locations.
    Wu CF; Lai CC; Liu YK
    Appl Ergon; 2013 Mar; 44(2):312-20. PubMed ID: 23036721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human activity monitoring system based on wearable sEMG and accelerometer wireless sensor nodes.
    Biagetti G; Crippa P; Falaschetti L; Orcioni S; Turchetti C
    Biomed Eng Online; 2018 Nov; 17(Suppl 1):132. PubMed ID: 30458783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and evaluation of a assistive computer interface by SEMG for individuals with spinal cord injuries.
    Choi C; Rim B; Kim J
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975386. PubMed ID: 22275590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.