These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 32634097)
1. Design and Validation of a Lower-Limb Haptic Rehabilitation Robot. Dawson-Elli AR; Adamczyk PG IEEE Trans Neural Syst Rehabil Eng; 2020 Jul; 28(7):1584-1594. PubMed ID: 32634097 [TBL] [Abstract][Full Text] [Related]
2. Towards functional robotic training: motor learning of dynamic tasks is enhanced by haptic rendering but hampered by arm weight support. Özen Ö; Buetler KA; Marchal-Crespo L J Neuroeng Rehabil; 2022 Feb; 19(1):19. PubMed ID: 35152897 [TBL] [Abstract][Full Text] [Related]
3. Enhancing stroke rehabilitation with whole-hand haptic rendering: development and clinical usability evaluation of a novel upper-limb rehabilitation device. Rätz R; Conti F; Thaler I; Müri RM; Marchal-Crespo L J Neuroeng Rehabil; 2024 Sep; 21(1):172. PubMed ID: 39334423 [TBL] [Abstract][Full Text] [Related]
4. Construction of efficacious gait and upper limb functional interventions based on brain plasticity evidence and model-based measures for stroke patients. Daly JJ; Ruff RL ScientificWorldJournal; 2007 Dec; 7():2031-45. PubMed ID: 18167618 [TBL] [Abstract][Full Text] [Related]
5. Walking with robot-generated haptic forces in a virtual environment: a new approach to analyze lower limb coordination. Sorrento GU; Archambault PS; Fung J J Neuroeng Rehabil; 2021 Sep; 18(1):136. PubMed ID: 34503526 [TBL] [Abstract][Full Text] [Related]
6. Patient's Healthy-Limb Motion Characteristic-Based Assist-As-Needed Control Strategy for Upper-Limb Rehabilitation Robots. Guo B; Li Z; Huang M; Li X; Han J Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610293 [TBL] [Abstract][Full Text] [Related]
7. Haptic vs sensorimotor training in the treatment of upper limb dysfunction in multiple sclerosis: A multi-center, randomised controlled trial. Solaro C; Cattaneo D; Basteris A; Carpinella I; De Luca A; Mueller M; Bertoni R; Ferrarin M; Sanguineti V J Neurol Sci; 2020 May; 412():116743. PubMed ID: 32145522 [TBL] [Abstract][Full Text] [Related]
8. Self-powered robots to reduce motor slacking during upper-extremity rehabilitation: a proof of concept study. Washabaugh EP; Treadway E; Gillespie RB; Remy CD; Krishnan C Restor Neurol Neurosci; 2018; 36(6):693-708. PubMed ID: 30400120 [TBL] [Abstract][Full Text] [Related]
9. Rehabilitation robotics for the upper extremity: review with new directions for orthopaedic disorders. Hakim RM; Tunis BG; Ross MD Disabil Rehabil Assist Technol; 2017 Nov; 12(8):765-771. PubMed ID: 28035841 [TBL] [Abstract][Full Text] [Related]
10. A Lower Limb Rehabilitation Assistance Training Robot System Driven by an Innovative Pneumatic Artificial Muscle System. Tsai TC; Chiang MH Soft Robot; 2023 Feb; 10(1):1-16. PubMed ID: 35196171 [TBL] [Abstract][Full Text] [Related]
11. Robot-assisted training compared with an enhanced upper limb therapy programme and with usual care for upper limb functional limitation after stroke: the RATULS three-group RCT. Rodgers H; Bosomworth H; Krebs HI; van Wijck F; Howel D; Wilson N; Finch T; Alvarado N; Ternent L; Fernandez-Garcia C; Aird L; Andole S; Cohen DL; Dawson J; Ford GA; Francis R; Hogg S; Hughes N; Price CI; Turner DL; Vale L; Wilkes S; Shaw L Health Technol Assess; 2020 Oct; 24(54):1-232. PubMed ID: 33140719 [TBL] [Abstract][Full Text] [Related]
12. Human-robot coupling dynamic modeling and analysis for upper limb rehabilitation robots. Xie Q; Meng Q; Dai Y; Zeng Q; Fan Y; Yu H Technol Health Care; 2021; 29(4):709-723. PubMed ID: 33386832 [TBL] [Abstract][Full Text] [Related]
13. Adaptive Neural Sliding-Mode Controller for Alternative Control Strategies in Lower Limb Rehabilitation. Yang T; Gao X IEEE Trans Neural Syst Rehabil Eng; 2020 Jan; 28(1):238-247. PubMed ID: 31603825 [TBL] [Abstract][Full Text] [Related]
14. Haptic Error Modulation Outperforms Visual Error Amplification When Learning a Modified Gait Pattern. Marchal-Crespo L; Tsangaridis P; Obwegeser D; Maggioni S; Riener R Front Neurosci; 2019; 13():61. PubMed ID: 30837824 [TBL] [Abstract][Full Text] [Related]
15. Exerciser for rehabilitation of the Arm (ERA): Development and unique features of a 3D end-effector robot. Milot MH; Hamel M; Provost PO; Bernier-Ouellet J; Dupuis M; Letourneau D; Briere S; Michaud F Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5833-5836. PubMed ID: 28269581 [TBL] [Abstract][Full Text] [Related]
16. Movement strategy and EMG activities of the upper extremity at assisted reaching exercise with a 7 DOF collaborative robot. Kato Y; Olensek A; Zadravec M; Matjacic Z; Tsuji T; Cikajlo I Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4886-4889. PubMed ID: 33019084 [TBL] [Abstract][Full Text] [Related]
17. Effect of Dyadic Haptic Collaboration on Ankle Motor Learning and Task Performance. Kim SJ; Wen Y; Ludvig D; Kucuktabak EB; Short MR; Lynch K; Hargrove L; Perreault EJ; Pons JL IEEE Trans Neural Syst Rehabil Eng; 2023; 31():416-425. PubMed ID: 36449583 [TBL] [Abstract][Full Text] [Related]
19. A Multistage Hemiplegic Lower-Limb Rehabilitation Robot: Design and Gait Trajectory Planning. Wang X; Wang H; Zhang B; Zheng D; Yu H; Cheng B; Niu J Sensors (Basel); 2024 Apr; 24(7):. PubMed ID: 38610521 [TBL] [Abstract][Full Text] [Related]
20. Design of a control framework for lower limb exoskeleton rehabilitation robot based on predictive assessment. Wang Y; Liu Z; Feng Z Clin Biomech (Bristol); 2022 May; 95():105660. PubMed ID: 35561659 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]