BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 32634098)

  • 1. Observing Actions Through Immersive Virtual Reality Enhances Motor Imagery Training.
    Choi JW; Kim BH; Huh S; Jo S
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jul; 28(7):1614-1622. PubMed ID: 32634098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Embodying Others in Immersive Virtual Reality: Electro-Cortical Signatures of Monitoring the Errors in the Actions of an Avatar Seen from a First-Person Perspective.
    Pavone EF; Tieri G; Rizza G; Tidoni E; Grisoni L; Aglioti SM
    J Neurosci; 2016 Jan; 36(2):268-79. PubMed ID: 26758821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transient visual perturbations boost short-term balance learning in virtual reality by modulating electrocortical activity.
    Peterson SM; Rios E; Ferris DP
    J Neurophysiol; 2018 Oct; 120(4):1998-2010. PubMed ID: 30044183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visual feedback from a virtual body modulates motor illusion induced by tendon vibration.
    Fusco G; Tieri G; Aglioti SM
    Psychol Res; 2021 Apr; 85(3):926-938. PubMed ID: 32524205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Motor Imagery Performance through Embodied Digital Twins in a Virtual Reality-Enabled Brain-Computer Interface Environment.
    Lakshminarayanan K; Shah R; Ramu V; Madathil D; Yao Y; Wang I; Brahmi B; Rahman MH
    J Vis Exp; 2024 May; (207):. PubMed ID: 38801273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving performance in motor imagery BCI-based control applications via virtually embodied feedback.
    Choi JW; Huh S; Jo S
    Comput Biol Med; 2020 Dec; 127():104079. PubMed ID: 33126130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immersive virtual reality in orthopaedics-a narrative review.
    Combalia A; Sanchez-Vives MV; Donegan T
    Int Orthop; 2024 Jan; 48(1):21-30. PubMed ID: 37566225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Embodiment Is Related to Better Performance on a Brain-Computer Interface in Immersive Virtual Reality: A Pilot Study.
    Juliano JM; Spicer RP; Vourvopoulos A; Lefebvre S; Jann K; Ard T; Santarnecchi E; Krum DM; Liew SL
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32098317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Virtual reality and motor imagery for early post-stroke rehabilitation.
    Choy CS; Fang Q; Neville K; Ding B; Kumar A; Mahmoud SS; Gu X; Fu J; Jelfs B
    Biomed Eng Online; 2023 Jul; 22(1):66. PubMed ID: 37407988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Error, rather than its probability, elicits specific electrocortical signatures: a combined EEG-immersive virtual reality study of action observation.
    Pezzetta R; Nicolardi V; Tidoni E; Aglioti SM
    J Neurophysiol; 2018 Sep; 120(3):1107-1118. PubMed ID: 29873613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The experience of virtual reality: are individual differences in mental imagery associated with sense of presence?
    Iachini T; Maffei L; Masullo M; Senese VP; Rapuano M; Pascale A; Sorrentino F; Ruggiero G
    Cogn Process; 2019 Aug; 20(3):291-298. PubMed ID: 30569268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motor priming in virtual reality can augment motor-imagery training efficacy in restorative brain-computer interaction: a within-subject analysis.
    Vourvopoulos A; Bermúdez I Badia S
    J Neuroeng Rehabil; 2016 Aug; 13(1):69. PubMed ID: 27503007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing Virtual Rehabilitation in Upper Limbs With Biocybernetic Adaptation: The Effects of Virtual Reality on Perceived Muscle Fatigue, Game Performance and User Experience.
    Montoya MF; Munoz JE; Henao OA
    IEEE Trans Neural Syst Rehabil Eng; 2020 Mar; 28(3):740-747. PubMed ID: 31985431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immersive Virtual Reality and Virtual Embodiment for Pain Relief.
    Matamala-Gomez M; Donegan T; Bottiroli S; Sandrini G; Sanchez-Vives MV; Tassorelli C
    Front Hum Neurosci; 2019; 13():279. PubMed ID: 31551731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acceptance of immersive head-mounted virtual reality in older adults.
    Huygelier H; Schraepen B; van Ee R; Vanden Abeele V; Gillebert CR
    Sci Rep; 2019 Mar; 9(1):4519. PubMed ID: 30872760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immersive Virtual Reality Mirror Therapy for Upper Limb Recovery After Stroke: A Pilot Study.
    Weber LM; Nilsen DM; Gillen G; Yoon J; Stein J
    Am J Phys Med Rehabil; 2019 Sep; 98(9):783-788. PubMed ID: 30964752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Progressive Training for Motor Imagery Brain-Computer Interfaces Using Gamification and Virtual Reality Embodiment.
    Škola F; Tinková S; Liarokapis F
    Front Hum Neurosci; 2019; 13():329. PubMed ID: 31616269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Congruency of Information Rather Than Body Ownership Enhances Motor Performance in Highly Embodied Virtual Reality.
    Odermatt IA; Buetler KA; Wenk N; Özen Ö; Penalver-Andres J; Nef T; Mast FW; Marchal-Crespo L
    Front Neurosci; 2021; 15():678909. PubMed ID: 34295219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Agency and responsibility over virtual movements controlled through different paradigms of brain-computer interface.
    Nierula B; Spanlang B; Martini M; Borrell M; Nikulin VV; Sanchez-Vives MV
    J Physiol; 2021 May; 599(9):2419-2434. PubMed ID: 31647122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EEG Movement Artifact Suppression in Interactive Virtual Reality.
    Tremmel C; Herff C; Krusienski DJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4576-4579. PubMed ID: 31946883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.