These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 32634102)

  • 1. Design of Transcutaneous Stimulation Electrodes for Wearable Neuroprostheses.
    RaviChandran N; Teo MY; Aw K; McDaid A
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jul; 28(7):1651-1660. PubMed ID: 32634102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformable Electrode Arrays for Wearable Neuroprostheses.
    RaviChandran N; Teo MY; McDaid A; Aw K
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of electrode size on selectivity and comfort in transcutaneous electrical stimulation of the forearm.
    Kuhn A; Keller T; Lawrence M; Morari M
    IEEE Trans Neural Syst Rehabil Eng; 2010 Jun; 18(3):255-62. PubMed ID: 20071267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterizing the Motor Points of Forearm Muscles for Dexterous Neuroprostheses.
    RaviChandran N; Aw KC; McDaid A
    IEEE Trans Biomed Eng; 2020 Jan; 67(1):50-59. PubMed ID: 30932826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of fractal electrodes for efficient neural stimulation.
    Golestanirad L; Pollo C; Graham SJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():791-4. PubMed ID: 24109806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A wearable multi-pad electrode prototype for selective functional electrical stimulation of upper extremities.
    Hai-Peng Wang ; Ai-Wen Guo ; Zheng-Yang Bi ; Fei Li ; Xiao-Ying Lu ; Zhi-Gong Wang
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():714-717. PubMed ID: 29059972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of fractal electrodes for efficient neural stimulation.
    Golestanirad L; Elahi B; Molina A; Mosig JR; Pollo C; Chen R; Graham SJ
    Front Neuroeng; 2013; 6():3. PubMed ID: 23874290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel fractal planar electrode design for efficient neural stimulation.
    Xuefeng Wei ; Benmassaoud M; Meller M; Kuchibhatla S
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1802-1805. PubMed ID: 28268678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stimulating the Comfort of Textile Electrodes in Wearable Neuromuscular Electrical Stimulation.
    Zhou H; Lu Y; Chen W; Wu Z; Zou H; Krundel L; Li G
    Sensors (Basel); 2015 Jul; 15(7):17241-57. PubMed ID: 26193273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simulation study: effect of the inter-electrode distance, electrode size and shape in transcutaneous electrical stimulation.
    Gomez-Tames JD; Gonzalez J; Yu W
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3576-9. PubMed ID: 23366700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of high-perimeter planar electrodes for efficient neural stimulation.
    Wei XF; Grill WM
    Front Neuroeng; 2009; 2():15. PubMed ID: 19936312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical Evaluations of Fractal Microelectrodes for Energy Efficient Neurostimulation.
    Park H; Takmakov P; Lee H
    Sci Rep; 2018 Mar; 8(1):4375. PubMed ID: 29531230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Wearable Multi-Site System for NMES-Based Hand Function Restoration.
    Crema A; Malesevic N; Furfaro I; Raschella F; Pedrocchi A; Micera S
    IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):428-440. PubMed ID: 28500007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An investigation of the effect of electrode size and electrode location on comfort during stimulation of the gastrocnemius muscle.
    Lyons GM; Leane GE; Clarke-Moloney M; O'Brien JV; Grace PA
    Med Eng Phys; 2004 Dec; 26(10):873-8. PubMed ID: 15567703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cuff and sieve electrode (CASE): The combination of neural electrodes for bi-directional peripheral nerve interfacing.
    Kim H; Dingle AM; Ness JP; Baek DH; Bong J; Lee IK; Shulzhenko NO; Zeng W; Israel JS; Pisaniello JA; Millevolte AXT; Park DW; Suminski AJ; Jung YH; Williams JC; Poore SO; Ma Z
    J Neurosci Methods; 2020 Apr; 336():108602. PubMed ID: 31981569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and in vivo evaluation of more efficient and selective deep brain stimulation electrodes.
    Howell B; Huynh B; Grill WM
    J Neural Eng; 2015 Aug; 12(4):046030. PubMed ID: 26170244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimulation selectivity of the “thin-film longitudinal intrafascicular electrode” (tfLIFE) and the “transverse intrafascicular multi-channel electrode” (TIME) in the large nerve animal model.
    Kundu A; Harreby KR; Yoshida K; Boretius T; Stieglitz T; Jensen W
    IEEE Trans Neural Syst Rehabil Eng; 2014 Mar; 22(2):400-10. PubMed ID: 23799699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of different three-dimensional electrodes on epiretinal electrical stimulation by modeling analysis.
    Cao X; Sui X; Lyu Q; Li L; Chai X
    J Neuroeng Rehabil; 2015 Aug; 12():73. PubMed ID: 26311232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimulation map for control of functional grasp based on multi-channel EMG recordings.
    Popović Maneski L; Topalović I; Jovičić N; Dedijer S; Konstantinović L; Popović DB
    Med Eng Phys; 2016 Nov; 38(11):1251-1259. PubMed ID: 27353335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-class autoencoder approach for optimal electrode set identification in wearable EEG event monitoring
    Ferrari LM; Hanna GA; Volpe P; Ismailova E; Bremond F; Zuluaga MA
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():7128-7131. PubMed ID: 34892744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.