These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 32634104)

  • 21. Hand Gesture Recognition Using EMG-IMU Signals and Deep Q-Networks.
    Vásconez JP; Barona López LI; Valdivieso Caraguay ÁL; Benalcázar ME
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36559983
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A CNN-SVM combined model for pattern recognition of knee motion using mechanomyography signals.
    Wu H; Huang Q; Wang D; Gao L
    J Electromyogr Kinesiol; 2018 Oct; 42():136-142. PubMed ID: 30077088
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spatial-Frequency Feature Learning and Classification of Motor Imagery EEG Based on Deep Convolution Neural Network.
    Miao M; Hu W; Yin H; Zhang K
    Comput Math Methods Med; 2020; 2020():1981728. PubMed ID: 32765639
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Automated MRI-Based Deep Learning Model for Detection of Alzheimer's Disease Process.
    Feng W; Halm-Lutterodt NV; Tang H; Mecum A; Mesregah MK; Ma Y; Li H; Zhang F; Wu Z; Yao E; Guo X
    Int J Neural Syst; 2020 Jun; 30(6):2050032. PubMed ID: 32498641
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hand Gesture Recognition Using Compact CNN Via Surface Electromyography Signals.
    Chen L; Fu J; Wu Y; Li H; Zheng B
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 31991849
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deep learning for waveform identification of resting needle electromyography signals.
    Nodera H; Osaki Y; Yamazaki H; Mori A; Izumi Y; Kaji R
    Clin Neurophysiol; 2019 May; 130(5):617-623. PubMed ID: 30870796
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deep Learning-Based Human Activity Real-Time Recognition for Pedestrian Navigation.
    Ye J; Li X; Zhang X; Zhang Q; Chen W
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32366055
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electromyogram-Based Classification of Hand and Finger Gestures Using Artificial Neural Networks.
    Lee KH; Min JY; Byun S
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009768
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced Recognition of Amputated Wrist and Hand Movements by Deep Learning Method Using Multimodal Fusion of Electromyography and Electroencephalography.
    Kim S; Shin DY; Kim T; Lee S; Hyun JK; Park SM
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062641
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inter-subject transfer learning with an end-to-end deep convolutional neural network for EEG-based BCI.
    Fahimi F; Zhang Z; Goh WB; Lee TS; Ang KK; Guan C
    J Neural Eng; 2019 Apr; 16(2):026007. PubMed ID: 30524056
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deep learning-based artificial vision for grasp classification in myoelectric hands.
    Ghazaei G; Alameer A; Degenaar P; Morgan G; Nazarpour K
    J Neural Eng; 2017 Jun; 14(3):036025. PubMed ID: 28467317
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of medical image classification accuracy among three machine learning methods.
    Maruyama T; Hayashi N; Sato Y; Hyuga S; Wakayama Y; Watanabe H; Ogura A; Ogura T
    J Xray Sci Technol; 2018; 26(6):885-893. PubMed ID: 30223423
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deep neural networks for human microRNA precursor detection.
    Zheng X; Fu X; Wang K; Wang M
    BMC Bioinformatics; 2020 Jan; 21(1):17. PubMed ID: 31931701
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Instance Transfer Subject-Dependent Strategy for Motor Imagery Signal Classification Using Deep Convolutional Neural Networks.
    Zhang K; Xu G; Chen L; Tian P; Han C; Zhang S; Duan N
    Comput Math Methods Med; 2020; 2020():1683013. PubMed ID: 32908576
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Performance evaluation of pattern recognition networks using electromyography signal and time-domain features for the classification of hand gestures.
    Vasanthi SM; Jayasree T
    Proc Inst Mech Eng H; 2020 Jun; 234(6):639-648. PubMed ID: 32202473
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of Deep-Learning and Conventional Machine-Learning Methods for the Automatic Recognition of the Hepatocellular Carcinoma Areas from Ultrasound Images.
    Brehar R; Mitrea DA; Vancea F; Marita T; Nedevschi S; Lupsor-Platon M; Rotaru M; Badea RI
    Sensors (Basel); 2020 May; 20(11):. PubMed ID: 32485986
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of Shallow and Deep Learning Methods on Classifying the Regional Pattern of Diffuse Lung Disease.
    Kim GB; Jung KH; Lee Y; Kim HJ; Kim N; Jun S; Seo JB; Lynch DA
    J Digit Imaging; 2018 Aug; 31(4):415-424. PubMed ID: 29043528
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electromyography Based Decoding of Dexterous, In-Hand Manipulation Motions With Temporal Multichannel Vision Transformers.
    Godoy RV; Dwivedi A; Liarokapis M
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2207-2216. PubMed ID: 35930510
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transfer learning in hand movement intention detection based on surface electromyography signals.
    Soroushmojdehi R; Javadzadeh S; Pedrocchi A; Gandolla M
    Front Neurosci; 2022; 16():977328. PubMed ID: 36440276
    [TBL] [Abstract][Full Text] [Related]  

  • 40. EMG-based facial gesture recognition through versatile elliptic basis function neural network.
    Hamedi M; Salleh ShH; Astaraki M; Noor AM
    Biomed Eng Online; 2013 Jul; 12():73. PubMed ID: 23866903
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.