BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 32634134)

  • 1. Chlamydial-Secreted Protease Chlamydia High Temperature Requirement Protein A (cHtrA) Degrades Human Cathelicidin LL-37 and Suppresses Its Anti-Chlamydial Activity.
    Dong X; Zhang W; Hou J; Ma M; Zhu C; Wang H; Hou S
    Med Sci Monit; 2020 Jul; 26():e923909. PubMed ID: 32634134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chlamydia-secreted protease CPAF degrades host antimicrobial peptides.
    Tang L; Chen J; Zhou Z; Yu P; Yang Z; Zhong G
    Microbes Infect; 2015 Jun; 17(6):402-8. PubMed ID: 25752416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The chlamydial periplasmic stress response serine protease cHtrA is secreted into host cell cytosol.
    Wu X; Lei L; Gong S; Chen D; Flores R; Zhong G
    BMC Microbiol; 2011 Apr; 11():87. PubMed ID: 21527029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chlamydial plasmid-encoded virulence factor Pgp3 neutralizes the antichlamydial activity of human cathelicidin LL-37.
    Hou S; Dong X; Yang Z; Li Z; Liu Q; Zhong G
    Infect Immun; 2015 Dec; 83(12):4701-9. PubMed ID: 26416907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chlamydial plasmid-encoded virulence factor Pgp3 interacts with human cathelicidin peptide LL-37 to modulate immune response.
    Hou S; Sun X; Dong X; Lin H; Tang L; Xue M; Zhong G
    Microbes Infect; 2019; 21(1):50-55. PubMed ID: 29959096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peptidase Inhibitor 15 (PI15) Regulates Chlamydial CPAF Activity.
    Prusty BK; Chowdhury SR; Gulve N; Rudel T
    Front Cell Infect Microbiol; 2018; 8():183. PubMed ID: 29900129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antimicrobial and protease inhibitory functions of the human cathelicidin (hCAP18/LL-37) prosequence.
    Zaiou M; Nizet V; Gallo RL
    J Invest Dermatol; 2003 May; 120(5):810-6. PubMed ID: 12713586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chlamydia trachomatis secretion of proteases for manipulating host signaling pathways.
    Zhong G
    Front Microbiol; 2011; 2():14. PubMed ID: 21687409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential regulation of human cathelicidin LL-37 by free fatty acids and their analogs.
    Jiang W; Sunkara LT; Zeng X; Deng Z; Myers SM; Zhang G
    Peptides; 2013 Dec; 50():129-38. PubMed ID: 24140860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The temperature activated HtrA protease from pathogen Chlamydia trachomatis acts as both a chaperone and protease at 37 degrees C.
    Huston WM; Swedberg JE; Harris JM; Walsh TP; Mathews SA; Timms P
    FEBS Lett; 2007 Jul; 581(18):3382-6. PubMed ID: 17604025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Susceptibility of human and murine Chlamydia trachomatis serovars to granulocyte- and epithelium-derived antimicrobial peptides.
    Chong-Cerrillo C; Selsted ME; Peterson EM; de la Maza LM
    J Pept Res; 2003 May; 61(5):237-42. PubMed ID: 12662357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antimicrobial Peptide Conformation as a Structural Determinant of Omptin Protease Specificity.
    Brannon JR; Thomassin JL; Gruenheid S; Le Moual H
    J Bacteriol; 2015 Nov; 197(22):3583-91. PubMed ID: 26350132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of uropathogenic Escherichia coli OmpT in the resistance against human cathelicidin LL-37.
    Brannon JR; Thomassin JL; Desloges I; Gruenheid S; Le Moual H
    FEMS Microbiol Lett; 2013 Aug; 345(1):64-71. PubMed ID: 23710656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of Antimicrobial Peptides: Progress Made with Human Cathelicidin LL-37.
    Wang G; Narayana JL; Mishra B; Zhang Y; Wang F; Wang C; Zarena D; Lushnikova T; Wang X
    Adv Exp Med Biol; 2019; 1117():215-240. PubMed ID: 30980360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inactivation of the antifungal and immunomodulatory properties of human cathelicidin LL-37 by aspartic proteases produced by the pathogenic yeast Candida albicans.
    Rapala-Kozik M; Bochenska O; Zawrotniak M; Wolak N; Trebacz G; Gogol M; Ostrowska D; Aoki W; Ueda M; Kozik A
    Infect Immun; 2015 Jun; 83(6):2518-30. PubMed ID: 25847962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation of human antimicrobial peptide LL-37 by Staphylococcus aureus-derived proteinases.
    Sieprawska-Lupa M; Mydel P; Krawczyk K; Wójcik K; Puklo M; Lupa B; Suder P; Silberring J; Reed M; Pohl J; Shafer W; McAleese F; Foster T; Travis J; Potempa J
    Antimicrob Agents Chemother; 2004 Dec; 48(12):4673-9. PubMed ID: 15561843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitivity of Chlamydia suis to cathelicidin peptides.
    Donati M; Di Francesco A; Gennaro R; Benincasa M; Magnino S; Pignanelli S; Shurdhi A; Moroni A; Mazzoni C; Merialdi G; Baldelli R; Cevenini R
    Vet Microbiol; 2007 Jul; 123(1-3):269-73. PubMed ID: 17391870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epithelial antimicrobial peptides in host defense against infection.
    Bals R
    Respir Res; 2000; 1(3):141-50. PubMed ID: 11667978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kallikrein-mediated proteolysis regulates the antimicrobial effects of cathelicidins in skin.
    Yamasaki K; Schauber J; Coda A; Lin H; Dorschner RA; Schechter NM; Bonnart C; Descargues P; Hovnanian A; Gallo RL
    FASEB J; 2006 Oct; 20(12):2068-80. PubMed ID: 17012259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Novel Cleavage Pattern of Complement C5 Induced by
    Peng L; Gao J; Hu Z; Zhang H; Tang L; Wang F; Cui L; Liu S; Zhao Y; Xu H; Su X; Feng X; Fang Y; Chen J
    Front Cell Infect Microbiol; 2021; 11():732163. PubMed ID: 35087765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.