These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 32634165)

  • 1. A three-dimensional (3-D) meshfree-based computational model to investigate stress-strain-time relationships of plant cells during drying.
    Rathnayaka CM; Karunasena HCP; Wijerathne WDCC; Senadeera W; Gu YT
    PLoS One; 2020; 15(7):e0235712. PubMed ID: 32634165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A particle based model to simulate microscale morphological changes of plant tissues during drying.
    Karunasena HC; Senadeera W; Brown RJ; Gu YT
    Soft Matter; 2014 Aug; 10(29):5249-68. PubMed ID: 24740612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of a coupled smoothed particle hydrodynamics (SPH) and coarse-grained (CG) numerical modelling approach to study three-dimensional (3-D) deformations of single cells of different food-plant materials during drying.
    Rathnayaka CM; Karunasena HCP; Senadeera W; Gu YT
    Soft Matter; 2018 Mar; 14(11):2015-2031. PubMed ID: 29376541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Particle-based model to simulate the micromechanics of biological cells.
    Van Liedekerke P; Tijskens E; Ramon H; Ghysels P; Samaey G; Roose D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 1):061906. PubMed ID: 20866439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of plant cell wall stiffness by mechanical stress: a mesoscale physical model.
    Oliveri H; Traas J; Godin C; Ali O
    J Math Biol; 2019 Feb; 78(3):625-653. PubMed ID: 30209574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A coarse-grained multiscale model to simulate morphological changes of food-plant tissues undergoing drying.
    Wijerathne WDCC; Rathnayaka CM; Karunasena HCP; Senadeera W; Sauret E; Turner IW; Gu YT
    Soft Matter; 2019 Jan; 15(5):901-916. PubMed ID: 30543256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A computational framework for 3D mechanical modeling of plant morphogenesis with cellular resolution.
    Boudon F; Chopard J; Ali O; Gilles B; Hamant O; Boudaoud A; Traas J; Godin C
    PLoS Comput Biol; 2015 Jan; 11(1):e1003950. PubMed ID: 25569615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SPH-DEM approach to numerically simulate the deformation of three-dimensional RBCs in non-uniform capillaries.
    Polwaththe-Gallage HN; Saha SC; Sauret E; Flower R; Senadeera W; Gu Y
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):161. PubMed ID: 28155717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A particle-based model to simulate the micromechanics of single-plant parenchyma cells and aggregates.
    Van Liedekerke P; Ghysels P; Tijskens E; Samaey G; Smeedts B; Roose D; Ramon H
    Phys Biol; 2010 May; 7(2):026006. PubMed ID: 20505228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Meshfree simulations of ultrasound vector flow imaging using smoothed particle hydrodynamics.
    Shahriari S; Garcia D
    Phys Med Biol; 2018 Oct; 63(20):205011. PubMed ID: 30247153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Smoothed particle hydrodynamics method applied to pulsatile flow inside a rigid two-dimensional model of left heart cavity.
    Shahriari S; Kadem L; Rogers BD; Hassan I
    Int J Numer Method Biomed Eng; 2012 Nov; 28(11):1121-43. PubMed ID: 23109382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shrinking the hammer: micromechanical approaches to morphogenesis.
    Milani P; Braybrook SA; Boudaoud A
    J Exp Bot; 2013 Nov; 64(15):4651-62. PubMed ID: 23873995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling Soft Tissue Damage and Failure Using a Combined Particle/Continuum Approach.
    Rausch MK; Karniadakis GE; Humphrey JD
    Biomech Model Mechanobiol; 2017 Feb; 16(1):249-261. PubMed ID: 27538848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring the mechanics of morphogenesis.
    Routier-Kierzkowska AL; Smith RS
    Curr Opin Plant Biol; 2013 Feb; 16(1):25-32. PubMed ID: 23218971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measuring the mechanical properties of plant cells by combining micro-indentation with osmotic treatments.
    Weber A; Braybrook S; Huflejt M; Mosca G; Routier-Kierzkowska AL; Smith RS
    J Exp Bot; 2015 Jun; 66(11):3229-41. PubMed ID: 25873663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluid-Structure Interaction Study of Transcatheter Aortic Valve Dynamics Using Smoothed Particle Hydrodynamics.
    Mao W; Li K; Sun W
    Cardiovasc Eng Technol; 2016 Dec; 7(4):374-388. PubMed ID: 27844463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Red blood cell simulation using a coupled shell-fluid analysis purely based on the SPH method.
    Soleimani M; Sahraee S; Wriggers P
    Biomech Model Mechanobiol; 2019 Apr; 18(2):347-359. PubMed ID: 30377857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deformation of Soft Tissue and Force Feedback Using the Smoothed Particle Hydrodynamics.
    Liu X; Wang R; Li Y; Song D
    Comput Math Methods Med; 2015; 2015():598415. PubMed ID: 26417380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational evaluation of smoothed particle hydrodynamics for implementing blood flow modelling through CT reconstructed arteries.
    Qin Y; Wu J; Hu Q; Ghista DN; Wong KK
    J Xray Sci Technol; 2017; 25(2):213-232. PubMed ID: 28234274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic simulation of flat water kayaking using a coupled biomechanical-smoothed particle hydrodynamics model.
    Harrison SM; Cleary PW; Cohen RCZ
    Hum Mov Sci; 2019 Apr; 64():252-273. PubMed ID: 30822692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.