These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 32634374)

  • 61. Resting-associated vocalization emitted by captive Asian house shrews (Suncus murinus): acoustic structure and variability in an unusual mammalian vocalization.
    Schneiderová I; Zouhar J
    PLoS One; 2014; 9(11):e111571. PubMed ID: 25390304
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Monkey drumming reveals common networks for perceiving vocal and nonvocal communication sounds.
    Remedios R; Logothetis NK; Kayser C
    Proc Natl Acad Sci U S A; 2009 Oct; 106(42):18010-5. PubMed ID: 19805199
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Social learning of vocal structure in a nonhuman primate?
    Lemasson A; Ouattara K; Petit EJ; Zuberbühler K
    BMC Evol Biol; 2011 Dec; 11():362. PubMed ID: 22177339
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Differences in acoustic features of vocalizations produced by killer whales cross-socialized with bottlenose dolphins.
    Musser WB; Bowles AE; Grebner DM; Crance JL
    J Acoust Soc Am; 2014 Oct; 136(4):1990-2002. PubMed ID: 25324098
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Imitation of novel conspecific and human speech sounds in the killer whale (
    Abramson JZ; Hernández-Lloreda MV; García L; Colmenares F; Aboitiz F; Call J
    Proc Biol Sci; 2018 Jan; 285(1871):. PubMed ID: 29386364
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Behaviour, biology and evolution of vocal learning in bats.
    Vernes SC; Wilkinson GS
    Philos Trans R Soc Lond B Biol Sci; 2020 Jan; 375(1789):20190061. PubMed ID: 31735153
    [TBL] [Abstract][Full Text] [Related]  

  • 67. What bats have to say about speech and language.
    Vernes SC
    Psychon Bull Rev; 2017 Feb; 24(1):111-117. PubMed ID: 27368623
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A global analysis of song frequency in passerines provides no support for the acoustic adaptation hypothesis but suggests a role for sexual selection.
    Mikula P; Valcu M; Brumm H; Bulla M; Forstmeier W; Petrusková T; Kempenaers B; Albrecht T
    Ecol Lett; 2021 Mar; 24(3):477-486. PubMed ID: 33314573
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A quantitative acoustic analysis of the vocal repertoire of the common marmoset (Callithrix jacchus).
    Agamaite JA; Chang CJ; Osmanski MS; Wang X
    J Acoust Soc Am; 2015 Nov; 138(5):2906-28. PubMed ID: 26627765
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Striking differences in the loud calls of howler monkey sister species (Alouatta pigra and A. palliata).
    Bergman TJ; Cortés-Ortiz L; Dias PA; Ho L; Adams D; Canales-Espinosa D; Kitchen DM
    Am J Primatol; 2016 Jul; 78(7):755-66. PubMed ID: 26950654
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Effect of auditory stimuli on conditioned vocal behavior of budgerigars.
    Seki Y; Dooling RJ
    Behav Processes; 2016 Jan; 122():87-9. PubMed ID: 26598232
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Temporal modulation in speech, music, and animal vocal communication: evidence of conserved function.
    Filippi P; Hoeschele M; Spierings M; Bowling DL
    Ann N Y Acad Sci; 2019 Oct; 1453(1):99-113. PubMed ID: 31482571
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The energetic basis of acoustic communication.
    Gillooly JF; Ophir AG
    Proc Biol Sci; 2010 May; 277(1686):1325-31. PubMed ID: 20053641
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The vocal repertoire of the domesticated zebra finch: a data-driven approach to decipher the information-bearing acoustic features of communication signals.
    Elie JE; Theunissen FE
    Anim Cogn; 2016 Mar; 19(2):285-315. PubMed ID: 26581377
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A Chinese alligator in heliox: formant frequencies in a crocodilian.
    Reber SA; Nishimura T; Janisch J; Robertson M; Fitch WT
    J Exp Biol; 2015 Aug; 218(Pt 15):2442-7. PubMed ID: 26246611
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Acoustic allometry revisited: morphological determinants of fundamental frequency in primate vocal production.
    Garcia M; Herbst CT; Bowling DL; Dunn JC; Fitch WT
    Sci Rep; 2017 Sep; 7(1):10450. PubMed ID: 28874852
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Cues to body size in the formant spacing of male koala (Phascolarctos cinereus) bellows: honesty in an exaggerated trait.
    Charlton BD; Ellis WA; McKinnon AJ; Cowin GJ; Brumm J; Nilsson K; Fitch WT
    J Exp Biol; 2011 Oct; 214(Pt 20):3414-22. PubMed ID: 21957105
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The neurobiology of innate, volitional and learned vocalizations in mammals and birds.
    Nieder A; Mooney R
    Philos Trans R Soc Lond B Biol Sci; 2020 Jan; 375(1789):20190054. PubMed ID: 31735150
    [TBL] [Abstract][Full Text] [Related]  

  • 79. VoICE: A semi-automated pipeline for standardizing vocal analysis across models.
    Burkett ZD; Day NF; Peñagarikano O; Geschwind DH; White SA
    Sci Rep; 2015 May; 5():10237. PubMed ID: 26018425
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Rapid evolution of the primate larynx?
    Bowling DL; Dunn JC; Smaers JB; Garcia M; Sato A; Hantke G; Handschuh S; Dengg S; Kerney M; Kitchener AC; Gumpenberger M; Fitch WT
    PLoS Biol; 2020 Aug; 18(8):e3000764. PubMed ID: 32780733
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.