These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 32634748)

  • 1. Identification of candidate miRNAs related in storage root development of sweet potato by high throughput sequencing.
    Tang C; Han R; Zhou Z; Yang Y; Zhu M; Xu T; Wang A; Li Z; Dong T
    J Plant Physiol; 2020 Aug; 251():153224. PubMed ID: 32634748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA-Seq and iTRAQ reveal multiple pathways involved in storage root formation and development in sweet potato (Ipomoea batatas L.).
    Dong T; Zhu M; Yu J; Han R; Tang C; Xu T; Liu J; Li Z
    BMC Plant Biol; 2019 Apr; 19(1):136. PubMed ID: 30971210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput deep sequencing reveals the important role that microRNAs play in the salt response in sweet potato (Ipomoea batatas L.).
    Yang Z; Zhu P; Kang H; Liu L; Cao Q; Sun J; Dong T; Zhu M; Li Z; Xu T
    BMC Genomics; 2020 Feb; 21(1):164. PubMed ID: 32066373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Characterization and Target Prediction of Candidate miRNAs Related to Abiotic Stress Responses and/or Storage Root Development in Sweet Potato.
    Sun L; Yang Y; Pan H; Zhu J; Zhu M; Xu T; Li Z; Dong T
    Genes (Basel); 2022 Jan; 13(1):. PubMed ID: 35052451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elevated carbon dioxide and drought modulate physiology and storage-root development in sweet potato by regulating microRNAs.
    Saminathan T; Alvarado A; Lopez C; Shinde S; Gajanayake B; Abburi VL; Vajja VG; Jagadeeswaran G; Raja Reddy K; Nimmakayala P; Reddy UK
    Funct Integr Genomics; 2019 Jan; 19(1):171-190. PubMed ID: 30244303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of genes possibly related to storage root induction in sweet potato.
    You MK; Hur CG; Ahn YS; Suh MC; Jeong BC; Shin JS; Bae JM
    FEBS Lett; 2003 Feb; 536(1-3):101-5. PubMed ID: 12586346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of miRNAs in Response to Sweet Potato Weevil (
    Lei J; Mei Y; Jin X; Liu Y; Wang L; Chai S; Cheng X; Yang X
    Genes (Basel); 2022 May; 13(6):. PubMed ID: 35741742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and characterization of miRNAome in root, stem, leaf and tuber developmental stages of potato (Solanum tuberosum L.) by high-throughput sequencing.
    Lakhotia N; Joshi G; Bhardwaj AR; Katiyar-Agarwal S; Agarwal M; Jagannath A; Goel S; Kumar A
    BMC Plant Biol; 2014 Jan; 14():6. PubMed ID: 24397411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. IbMADS1 (Ipomoea batatas MADS-box 1 gene) is involved in tuberous root initiation in sweet potato (Ipomoea batatas).
    Ku AT; Huang YS; Wang YS; Ma D; Yeh KW
    Ann Bot; 2008 Jul; 102(1):57-67. PubMed ID: 18463111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated transcriptome, small RNA and degradome sequencing approaches proffer insights into chlorogenic acid biosynthesis in leafy sweet potato.
    Liu Y; Su W; Wang L; Lei J; Chai S; Zhang W; Yang X
    PLoS One; 2021; 16(1):e0245266. PubMed ID: 33481815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uncovering anthocyanin biosynthesis related microRNAs and their target genes by small RNA and degradome sequencing in tuberous roots of sweetpotato.
    He L; Tang R; Shi X; Wang W; Cao Q; Liu X; Wang T; Sun Y; Zhang H; Li R; Jia X
    BMC Plant Biol; 2019 Jun; 19(1):232. PubMed ID: 31159725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional genomics by integrated analysis of transcriptome of sweet potato (Ipomoea batatas (L.) Lam.) during root formation.
    Kim S; Nie H; Jun B; Kim J; Lee J; Kim S; Kim E; Kim S
    Genes Genomics; 2020 May; 42(5):581-596. PubMed ID: 32240514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. IbNF-YA1 is a key factor in the storage root development of sweet potato.
    Xue L; Wang Y; Fan Y; Jiang Z; Wei Z; Zhai H; He S; Zhang H; Yang Y; Zhao N; Gao S; Liu Q
    Plant J; 2024 Jun; 118(6):1991-2002. PubMed ID: 38549549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative Transcriptome Analysis Reveals the Transcriptional Alterations in Growth- and Development-Related Genes in Sweet Potato Plants Infected and Non-Infected by SPFMV, SPV2, and SPVG.
    Shi J; Zhao L; Yan B; Zhu Y; Ma H; Chen W; Ruan S
    Int J Mol Sci; 2019 Feb; 20(5):. PubMed ID: 30813603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of novel and conserved microRNAs in Panax notoginseng roots by high-throughput sequencing.
    Wei R; Qiu D; Wilson IW; Zhao H; Lu S; Miao J; Feng S; Bai L; Wu Q; Tu D; Ma X; Tang Q
    BMC Genomics; 2015 Oct; 16():835. PubMed ID: 26490136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative analysis of full-length transcriptomes based on hybrid population reveals regulatory mechanisms of anthocyanin biosynthesis in sweet potato (Ipomoea batatas (L.) Lam).
    Qin Z; Hou F; Li A; Dong S; Huang C; Wang Q; Zhang L
    BMC Plant Biol; 2020 Jun; 20(1):299. PubMed ID: 32600332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. De novo sequencing and a comprehensive analysis of purple sweet potato (Impomoea batatas L.) transcriptome.
    Xie F; Burklew CE; Yang Y; Liu M; Xiao P; Zhang B; Qiu D
    Planta; 2012 Jul; 236(1):101-13. PubMed ID: 22270559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Starch content differences between two sweet potato accessions are associated with specific changes in gene expression.
    Yang S; Liu X; Qiao S; Tan W; Li M; Feng J; Zhang C; Kang X; Huang T; Zhu Y; Yang L; Wang D
    Funct Integr Genomics; 2018 Nov; 18(6):613-625. PubMed ID: 29754269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Digital gene expression analysis based on integrated de novo transcriptome assembly of sweet potato [Ipomoea batatas (L.) Lam].
    Tao X; Gu YH; Wang HY; Zheng W; Li X; Zhao CW; Zhang YZ
    PLoS One; 2012; 7(4):e36234. PubMed ID: 22558397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptome Analysis Reveals Genes and Pathways Associated with Drought Tolerance of Early Stages in Sweet Potato (
    Cheng P; Kong F; Han Y; Liu X; Xia J
    Genes (Basel); 2024 Jul; 15(7):. PubMed ID: 39062727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.