These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 32635271)

  • 21. Three-dimensional simulation of mass transfer in artificial kidneys.
    Ding W; Li W; Sun S; Zhou X; Hardy PA; Ahmad S; Gao D
    Artif Organs; 2015 Jun; 39(6):E79-89. PubMed ID: 25739806
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dialysate flow distribution in hollow fiber hemodialyzers with different dialysate pathway configurations.
    Ronco C; Brendolan A; Crepaldi C; Rodighiero M; Everard P; Ballestri M; Cappelli G; Spittle M; La Greca G
    Int J Artif Organs; 2000 Sep; 23(9):601-9. PubMed ID: 11059882
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Computational flow modeling in hollow-fiber dialyzers.
    Eloot S; De Wachter D; Van Tricht I; Verdonck P
    Artif Organs; 2002 Jul; 26(7):590-9. PubMed ID: 12081517
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Potential of dual-skinned, high-flux membranes to reduce backtransport in hemodialysis.
    Soltys PJ; Zydney A; Leypoldt JK; Henderson LW; Ofsthun NJ
    Kidney Int; 2000 Aug; 58(2):818-28. PubMed ID: 10916107
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dialyzer membranes as determinants of the adequacy of dialysis.
    Chelamcharla M; Leypoldt JK; Cheung AK
    Semin Nephrol; 2005 Mar; 25(2):81-9. PubMed ID: 15791559
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Investigating the Dialysis Treatment Using Hollow Fiber Membrane: A New Approach by CFD.
    Magalhães HLF; Gomez RS; Leite BE; Nascimento JBS; Brito MKT; Araújo MV; Cavalcante DCM; Lima ES; Lima AGB; Farias Neto SR
    Membranes (Basel); 2022 Jul; 12(7):. PubMed ID: 35877913
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fluid mechanics and crossfiltration in hollow-fiber hemodialyzers.
    Ronco C
    Contrib Nephrol; 2007; 158():34-49. PubMed ID: 17684341
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimisation of solute transport in dialysers using a three-dimensional finite volume model.
    Eloot S; Vierendeels J; Verdonck P
    Comput Methods Biomech Biomed Engin; 2006 Dec; 9(6):363-70. PubMed ID: 17145670
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Experimental validation of convection-diffusion discretisation scheme employed for computational modelling of biological mass transport.
    Carroll GT; Devereux PD; Ku DN; McGloughlin TM; Walsh MT
    Biomed Eng Online; 2010 Jul; 9():34. PubMed ID: 20642816
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computational evaluation of dialysis fluid flow in dialyzers with variously designed jackets.
    Yamamoto K; Matsuda M; Hirano A; Takizawa N; Iwashima S; Yakushiji T; Fukuda M; Miyasaka T; Sakai K
    Artif Organs; 2009 Jun; 33(6):481-6. PubMed ID: 19473145
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanisms determining the ratio of conductivity clearance to urea clearance.
    Gotch FA; Panlilio FM; Buyaki RA; Wang EX; Folden TI; Levin NW
    Kidney Int Suppl; 2004 Jul; (89):S3-S24. PubMed ID: 15200406
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Two-dimensional finite element model for oxygen transfer in cross-flow hollow fiber membrane artificial lungs.
    Dierickx PW; de Wachter DS; Verdonck PR
    Int J Artif Organs; 2001 Sep; 24(9):628-35. PubMed ID: 11693419
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of dialysate flow configurations in continuous renal replacement therapy on solute removal: computational modeling.
    Kim JC; Cruz D; Garzotto F; Kaushik M; Teixeria C; Baldwin M; Baldwin I; Nalesso F; Kim JH; Kang E; Kim HC; Ronco C
    Blood Purif; 2013; 35(1-3):106-11. PubMed ID: 23343554
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bound solute dialysis.
    Patzer JF; Bane SE
    ASAIO J; 2003; 49(3):271-81. PubMed ID: 12790375
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kinetics of beta2-microglobulin and phosphate during hemodialysis: effects of treatment frequency and duration.
    Leypoldt JK
    Semin Dial; 2005; 18(5):401-8. PubMed ID: 16191181
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Finite-element modeling of time-dependent sodium exchange across the hollow fiber of a hemodialyzer by coupling with a blood pool model.
    Ravagli E; Grandi E; Rovatti P; Severi S
    Int J Artif Organs; 2016 Nov; 39(9):471-478. PubMed ID: 27834449
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Uniformity of the fluid flow velocities within hollow fiber membranes of blood oxygenation devices.
    Mazaheri AR; Ahmadi G
    Artif Organs; 2006 Jan; 30(1):10-5. PubMed ID: 16409392
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dialyzer clearances and mass transfer-area coefficients for small solutes at low dialysate flow rates.
    Leypoldt JK; Kamerath CD; Gilson JF; Friederichs G
    ASAIO J; 2006; 52(4):404-9. PubMed ID: 16883120
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Middle molecule removal in low-flux polysulfone dialyzers: impact of flows and surface area on whole-body and dialyzer clearances.
    Eloot S; de Vos JY; de Vos F; Hombrouckx R; Verdonck P
    Hemodial Int; 2005 Oct; 9(4):399-408. PubMed ID: 16219061
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Increasing dialysate flow rate increases dialyzer urea mass transfer-area coefficients during clinical use.
    Ouseph R; Ward RA
    Am J Kidney Dis; 2001 Feb; 37(2):316-20. PubMed ID: 11157372
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.