These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 32635425)

  • 1. Shaping Soft Robotic Microactuators by Wire Electrical Discharge Grinding.
    Milana E; Bellotti M; Gorissen B; Qian J; De Volder M; Reynaerts D
    Micromachines (Basel); 2020 Jul; 11(7):. PubMed ID: 32635425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design improvement of the conversion mechanism from balloon inflation to bending motion for inflatable film actuators.
    Hori Y; Konishi S
    Microsyst Nanoeng; 2023; 9():55. PubMed ID: 37180456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel fabrication of soft microactuators with morphological computing using soft lithography.
    Tyagi M; Pan J; Jager EWH
    Microsyst Nanoeng; 2019; 5():44. PubMed ID: 31636933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Precision EDM of Micron-Scale Diameter Hole Array Using in-Process Wire Electro-Discharge Grinding High-Aspect-Ratio Microelectrodes.
    Zou Z; Guo Z; Huang Q; Yue T; Liu J; Chen X
    Micromachines (Basel); 2020 Dec; 12(1):. PubMed ID: 33375306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Programming Deformations of 3D Microstructures: Opportunities Enabled by Magnetic Alignment of Liquid Crystalline Elastomers.
    Li S; Aizenberg M; Lerch MM; Aizenberg J
    Acc Mater Res; 2023 Dec; 4(12):1008-1019. PubMed ID: 38148997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-output bending motion of a soft inflatable microactuator with an actuation conversion mechanism.
    Konishi S; Kosawa H
    Sci Rep; 2020 Jul; 10(1):12038. PubMed ID: 32694714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Research on Geometric Constraint Strategies for Controlling the Diameter of Micro-Shafts Manufactured via Wire Electric Discharge Grinding.
    Jia J; Li Z; Hu B; Wang Y; Wang J; Li C; Xiang W
    Micromachines (Basel); 2023 Nov; 14(12):. PubMed ID: 38138345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Origami-Based Soft Robotic Actuator for Upper Gastrointestinal Endoscopic Applications.
    Chauhan M; Chandler JH; Jha A; Subramaniam V; Obstein KL; Valdastri P
    Front Robot AI; 2021; 8():664720. PubMed ID: 34041275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Out-of-Plane Soft Lithography for Soft Pneumatic Microactuator Arrays.
    Milana E; Gorissen B; De Borre E; Ceyssens F; Reynaerts D; De Volder M
    Soft Robot; 2023 Feb; 10(1):197-204. PubMed ID: 35704896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elastic Inflatable Actuators for Soft Robotic Applications.
    Gorissen B; Reynaerts D; Konishi S; Yoshida K; Kim JW; De Volder M
    Adv Mater; 2017 Nov; 29(43):. PubMed ID: 28949425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphological Transformation between Flat and Tube Structures by Coordinated Motions of Soft Pneumatic Microactuators.
    Konishi S; Oya F
    Sci Rep; 2019 Oct; 9(1):14483. PubMed ID: 31597950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of Multi-Material Pneumatic Actuators and Microactuators Using Stereolithography.
    Song Q; Chen Y; Hou P; Zhu P; Helmer D; Kotz-Helmer F; Rapp BE
    Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36837944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parallel Helix Actuators for Soft Robotic Applications.
    Chandler JH; Chauhan M; Garbin N; Obstein KL; Valdastri P
    Front Robot AI; 2020; 7():119. PubMed ID: 33501285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental and Numerical Analysis of the Deformation Behavior of Adaptive Fiber-Rubber Composites with Integrated Shape Memory Alloys.
    Lohse F; Kopelmann K; Grellmann H; Ashir M; Gereke T; Häntzsche E; Sennewald C; Cherif C
    Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-Assembled Microactuators Using Chiral Liquid Crystal Elastomers.
    Lee YJ; Abdelrahman MK; Kalairaj MS; Ware TH
    Small; 2023 Oct; 19(41):e2302774. PubMed ID: 37291979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Largely deformable torsional soft morphing actuator created by twisted shape memory alloy wire and its application to a soft morphing wing.
    Lee SY; Lee GY
    Sci Rep; 2023 Oct; 13(1):17629. PubMed ID: 37848495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Static Modeling of Soft Reinforced Bending Actuator Considering External Force Constraints.
    Namdar Ghalati MH; Ghafarirad H; Suratgar AA; Zareinejad M; Ahmadi-Pajouh MA
    Soft Robot; 2022 Aug; 9(4):776-787. PubMed ID: 34569882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long Shape Memory Alloy Tendon-based Soft Robotic Actuators and Implementation as a Soft Gripper.
    Lee JH; Chung YS; Rodrigue H
    Sci Rep; 2019 Aug; 9(1):11251. PubMed ID: 31375746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kirigami-Inspired 3D Printable Soft Pneumatic Actuators with Multiple Deformation Modes for Soft Robotic Applications.
    Guo J; Li Z; Low JH; Han Q; Chen CY; Liu J; Liu Z; Yeow CH
    Soft Robot; 2023 Aug; 10(4):737-748. PubMed ID: 36827310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomimetic Artificial Joints Based on Multi-Material Pneumatic Actuators Developed for Soft Robotic Finger Application.
    Zhao S; Lei Y; Wang Z; Zhang J; Liu J; Zheng P; Gong Z; Sun Y
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.