These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 32635442)

  • 21. Olivocochlear efferents: Their action, effects, measurement and uses, and the impact of the new conception of cochlear mechanical responses.
    Guinan JJ
    Hear Res; 2018 May; 362():38-47. PubMed ID: 29291948
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Auditory event-related potentials and function of the medial olivocochlear efferent system in children with auditory processing disorders.
    Morlet T; Nagao K; Greenwood LA; Cardinale RM; Gaffney RG; Riegner T
    Int J Audiol; 2019 Apr; 58(4):213-223. PubMed ID: 30682902
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Musicianship enhances ipsilateral and contralateral efferent gain control to the cochlea.
    Bidelman GM; Schneider AD; Heitzmann VR; Bhagat SP
    Hear Res; 2017 Feb; 344():275-283. PubMed ID: 27964936
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Medial efferent mechanisms in children with auditory processing disorders.
    Mishra SK
    Front Hum Neurosci; 2014; 8():860. PubMed ID: 25386132
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of olivocochlear bundle section on otoacoustic emissions in humans: efferent effects in comparison with control subjects.
    Williams EA; Brookes GB; Prasher DK
    Acta Otolaryngol; 1994 Mar; 114(2):121-9. PubMed ID: 8203191
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of electrical stimulation of medial olivocochlear neurons on ipsilateral and contralateral cochlear responses.
    Gifford ML; Guinan JJ
    Hear Res; 1987; 29(2-3):179-94. PubMed ID: 3624082
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of prolonged contralateral acoustic stimulation on transient evoked otoacoustic emissions.
    van Zyl A; Swanepoel D; Hall JW
    Hear Res; 2009 Aug; 254(1-2):77-81. PubMed ID: 19401226
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Medial olivocochlear function in children with poor speech-in-noise performance and language disorder.
    Rocha-Muniz CN; Mamede Carvallo RM; Schochat E
    Int J Pediatr Otorhinolaryngol; 2017 May; 96():116-121. PubMed ID: 28390599
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Contralateral suppression of linear and nonlinear transient evoked otoacoustic emissions in neonates at risk for hearing loss.
    Durante AS; Carvallo RM
    J Commun Disord; 2008; 41(1):70-83. PubMed ID: 17585930
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Changes in transient evoked otoacoustic emissions contralateral suppression in infants].
    Durante AS; Carvallo RM
    Pro Fono; 2006; 18(1):49-56. PubMed ID: 16625871
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Contralateral Acoustic Effect of Transient Evoked Otoacoustic Emissions in Neonates.
    Hamburger A; Ari-Even Roth D ; Muchnik C; Kuint J; Hildesheimer M
    Int Tinnitus J; 1998; 4(1):53-57. PubMed ID: 10753386
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of the olivocochlear efferent reflex strength in the susceptibility to temporary hearing deterioration after music exposure in young adults.
    Hannah K; Ingeborg D; Leen M; Annelies B; Birgit P; Freya S; Bart V
    Noise Health; 2014; 16(69):108-15. PubMed ID: 24804715
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ipsilateral suppression of transient evoked otoacoustic emission: role of the medial olivocochlear system.
    Tavartkiladze GA; Frolenkov GI; Artamasov SV
    Acta Otolaryngol; 1996 Mar; 116(2):213-8. PubMed ID: 8725517
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Olivocochlear efferent function: issues regarding methods and the interpretation of results.
    Guinan JJ
    Front Syst Neurosci; 2014; 8():142. PubMed ID: 25161612
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Contralateral Inhibition of Click- and Chirp-Evoked Human Compound Action Potentials.
    Smith SB; Lichtenhan JT; Cone BK
    Front Neurosci; 2017; 11():189. PubMed ID: 28420960
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Attentional modulation of medial olivocochlear inhibition: evidence for immaturity in children.
    Mishra SK
    Hear Res; 2014 Dec; 318():31-6. PubMed ID: 25445819
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Concurrent measures of contralateral suppression of transient-evoked otoacoustic emissions and of auditory steady-state responses.
    Mertes IB; Leek MR
    J Acoust Soc Am; 2016 Sep; 140(3):2027. PubMed ID: 27914370
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identifying the Origin of Effects of Contralateral Noise on Transient Evoked Otoacoustic Emissions in Unanesthetized Mice.
    Xu Y; Cheatham MA; Siegel JH
    J Assoc Res Otolaryngol; 2017 Aug; 18(4):543-553. PubMed ID: 28303411
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Auditory Attention Reduced Ear-Canal Noise in Humans by Reducing Subject Motion, Not by Medial Olivocochlear Efferent Inhibition: Implications for Measuring Otoacoustic Emissions During a Behavioral Task.
    Francis NA; Zhao W; Guinan JJ
    Front Syst Neurosci; 2018; 12():42. PubMed ID: 30271329
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The MOC reflex during active listening to speech.
    Garinis AC; Glattke T; Cone BK
    J Speech Lang Hear Res; 2011 Oct; 54(5):1464-76. PubMed ID: 21862678
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.