These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 32635520)

  • 1. Application of the S-N Curve Mean Stress Correction Model in Terms of Fatigue Life Estimation for Random Torsional Loading for Selected Aluminum Alloys.
    Böhm M; Kluger K; Pochwała S; Kupina M
    Materials (Basel); 2020 Jul; 13(13):. PubMed ID: 32635520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fatigue Life of Aluminum Alloys Based on Shear and Hydrostatic Strain.
    Łagoda T; Głowacka K; Kurek A
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33138233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical Properties of Aluminum Alloys under Low-Cycle Fatigue Loading.
    Zhao X; Li H; Chen T; Cao B; Li X
    Materials (Basel); 2019 Jun; 12(13):. PubMed ID: 31252548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporation of Corrosion Effects into the Life-Cycle Analysis of AW-2017A-T4 Aluminium Alloy under Bending Moment.
    Blacha Ł; Małecka J; Łagoda T
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32825415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatigue Prediction of Aluminum Alloys Considering Critical Plane Orientation under Complex Stress States.
    Kurek M
    Materials (Basel); 2020 Sep; 13(17):. PubMed ID: 32887343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Varied approaches to loading assessment in fatigue studies.
    Gadolina IV; Makhutov NA; Erpalov AV
    Int J Fatigue; 2021 Mar; 144():106035. PubMed ID: 33288971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on Fatigue Life of Aluminum Alloy 6061-T6 Based on Random Defect Characteristics.
    Lu L; Chen H; Ren M; Xu S; Li Y; Zhou T; Yang Y
    Materials (Basel); 2024 Feb; 17(5):. PubMed ID: 38473604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study on the Elastic-Plastic Correlation of Low-Cycle Fatigue for Variable Asymmetric Loadings.
    Zhang J; Li W; Dai H; Liu N; Lin J
    Materials (Basel); 2020 May; 13(11):. PubMed ID: 32481498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative Study of Phenomenological Residual Strength Models for Composite Materials Subjected to Fatigue: Predictions at Constant Amplitude (CA) Loading.
    D'Amore A; Grassia L
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31627358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of Life-Dependent Material Parameters to Fatigue Life Prediction under Multiaxial and Non-Zero Mean Loading.
    Kluger K; Karolczuk A; Derda S
    Materials (Basel); 2020 Mar; 13(7):. PubMed ID: 32235605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Limited Stress Surface Model for Bending and Torsion Fatigue Loading with the Mean Load Value.
    Pawliczek R; Rozumek D
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Research on the Influence of the AW 5754 Aluminum Alloy State Condition and Sheet Arrangements with AW 6082 Aluminum Alloy on the Forming Process and Strength of the ClinchRivet Joints.
    Mucha J; Kaščák Ľ; Witkowski W
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34072850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of cyclic torsional loading on the fatigue resistance of K3 instruments.
    Bahia MG; Melo MC; Buono VT
    Int Endod J; 2008 Oct; 41(10):883-91. PubMed ID: 18699785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mean-stress sensitivity of an ultrahigh-strength steel under uniaxial and torsional high and very high cycle fatigue loading.
    Schönbauer BM; Ghosh S; Karr U; Pallaspuro S; Kömi J; Frondelius T; Mayer H
    Fatigue Fract Eng Mater Struct; 2022 Nov; 45(11):3361-3377. PubMed ID: 36590824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fatigue life analysis for 6061-T6 aluminum alloy based on surface roughness.
    Yang Y; Chen H; Feng W; Xu S; Li Y; Zhang R
    PLoS One; 2021; 16(6):e0252772. PubMed ID: 34191809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of applied stress ratio on the fatigue behavior of additively manufactured porous biomaterials under compressive loading.
    de Krijger J; Rans C; Van Hooreweder B; Lietaert K; Pouran B; Zadpoor AA
    J Mech Behav Biomed Mater; 2017 Jun; 70():7-16. PubMed ID: 27998687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclic and Torsional Fatigue Resistance of Reciprocating Single Files Manufactured by Different Nickel-titanium Alloys.
    Alcalde MP; Tanomaru-Filho M; Bramante CM; Duarte MAH; Guerreiro-Tanomaru JM; Camilo-Pinto J; Só MVR; Vivan RR
    J Endod; 2017 Jul; 43(7):1186-1191. PubMed ID: 28527852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlation between Thermal Behaviour of AA5754-H111 during Fatigue Loading and Fatigue Strength at Fixed Number of Cycles.
    De Finis R; Palumbo D; Serio LM; De Filippis LAC; Galietti U
    Materials (Basel); 2018 May; 11(5):. PubMed ID: 29724074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of torsional loading on compressive fatigue behaviour of trabecular bone.
    Fatihhi SJ; Rabiatul AA; Harun MN; Kadir MR; Kamarul T; Syahrom A
    J Mech Behav Biomed Mater; 2016 Feb; 54():21-32. PubMed ID: 26410762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fatigue Test of 6082 Aluminum Alloy under Random Load with Controlled Kurtosis.
    Owsiński R; Niesłony A
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33578988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.