BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 32635635)

  • 1. Aquatic Mosses as Adaptable Bio-Filters for Heavy Metal Removal from Contaminated Water.
    Papadia P; Barozzi F; Migoni D; Rojas M; Fanizzi FP; Di Sansebastiano GP
    Int J Mol Sci; 2020 Jul; 21(13):. PubMed ID: 32635635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toxicity, accumulation, and removal of heavy metals by three aquatic macrophytes.
    Basile A; Sorbo S; Conte B; Cobianchi RC; Trinchella F; Capasso C; Carginale V
    Int J Phytoremediation; 2012 Apr; 14(4):374-87. PubMed ID: 22567718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biotic Strategies for Toxic Heavy Metal Decontamination.
    Mishra RK; Sharma V
    Recent Pat Biotechnol; 2017; 11(3):218-228. PubMed ID: 28413994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined effects of Cu, Cd, Pb, and Zn on the growth and uptake of consortium of Cu-resistant Penicillium sp. A1 and Cd-resistant Fusarium sp. A19.
    Pan R; Cao L; Zhang R
    J Hazard Mater; 2009 Nov; 171(1-3):761-6. PubMed ID: 19592158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioaccumulation and translocation of nine heavy metals by
    Eid EM; Shaltout KH; Moghanm FS; Youssef MSG; El-Mohsnawy E; Haroun SA
    Int J Phytoremediation; 2019; 21(8):821-830. PubMed ID: 30784295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accumulation of Indium and other heavy metals by Eleocharis acicularis: an option for phytoremediation and phytomining.
    Ha NT; Sakakibara M; Sano S
    Bioresour Technol; 2011 Feb; 102(3):2228-34. PubMed ID: 21050745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytofiltration of arsenic by aquatic moss (Warnstorfia fluitans).
    Sandhi A; Landberg T; Greger M
    Environ Pollut; 2018 Jun; 237():1098-1105. PubMed ID: 29157972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atmospheric deposition of heavy metals in Wuxi, China: estimation based on native moss analysis.
    Yan Y; Zhang Q; Wang GG; Fang YM
    Environ Monit Assess; 2016 Jun; 188(6):360. PubMed ID: 27207630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal removal by bed filter materials used in domestic wastewater treatment.
    Renman A; Renman G; Gustafsson JP; Hylander L
    J Hazard Mater; 2009 Jul; 166(2-3):734-9. PubMed ID: 19157700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Biosorption of Cd(II), Cu(II), Pb(II) and Zn(II) in aqueous solutions by fruiting bodies of macrofungi (Auricularia polytricha and Tremella fuciformis)].
    Mo Y; Pan R; Huang HW; Cao LX; Zhang RD
    Huan Jing Ke Xue; 2010 Jul; 31(7):1566-74. PubMed ID: 20825027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using Myriophyllum aquaticum (Vell.) Verdc. to remove heavy metals from contaminated water: Better dead or alive?
    Colzi I; Lastrucci L; Rangoni M; Coppi A; Gonnelli C
    J Environ Manage; 2018 May; 213():320-328. PubMed ID: 29502017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heavy metals in different moss species in alpine ecosystems of Mountain Gongga, China: Geochemical characteristics and controlling factors.
    Xiao J; Han X; Sun S; Wang L; Rinklebe J
    Environ Pollut; 2021 Mar; 272():115991. PubMed ID: 33187837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heavy metal accumulation and phytoremediation potential by transplants of the seagrass Zostera marina in the polluted bay systems.
    Lee G; Suonan Z; Kim SH; Hwang DW; Lee KS
    Mar Pollut Bull; 2019 Dec; 149():110509. PubMed ID: 31421565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pilot study on road traffic emissions (PAHs, heavy metals) measured by using mosses in a tunnel experiment in Vienna, Austria.
    Zechmeister HG; Dullinger S; Hohenwallner D; Riss A; Hanus-Illnar A; Scharf S
    Environ Sci Pollut Res Int; 2006 Oct; 13(6):398-405. PubMed ID: 17120830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effective phytoremediation of low-level heavy metals by native macrophytes in a vanadium mining area, China.
    Jiang B; Xing Y; Zhang B; Cai R; Zhang D; Sun G
    Environ Sci Pollut Res Int; 2018 Nov; 25(31):31272-31282. PubMed ID: 30194573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytoremediation of Heavy Metal-Contaminated Sites: Eco-environmental Concerns, Field Studies, Sustainability Issues, and Future Prospects.
    Saxena G; Purchase D; Mulla SI; Saratale GD; Bharagava RN
    Rev Environ Contam Toxicol; 2020; 249():71-131. PubMed ID: 30806802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of metal transporters in phytoremediation: A closer look at Arabidopsis.
    Maharajan T; Chellasamy G; Tp AK; Ceasar SA; Yun K
    Chemosphere; 2023 Jan; 310():136881. PubMed ID: 36257391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tolerance and hyperaccumulation of a mixture of heavy metals (Cu, Pb, Hg, and Zn) by four aquatic macrophytes.
    Romero-Hernández JA; Amaya-Chávez A; Balderas-Hernández P; Roa-Morales G; González-Rivas N; Balderas-Plata MÁ
    Int J Phytoremediation; 2017 Mar; 19(3):239-245. PubMed ID: 27712089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ecological risk assessment of heavy metals in sediments and water from the coastal areas of the Bohai Sea and the Yellow Sea.
    Tian K; Wu Q; Liu P; Hu W; Huang B; Shi B; Zhou Y; Kwon BO; Choi K; Ryu J; Seong Khim J; Wang T
    Environ Int; 2020 Mar; 136():105512. PubMed ID: 31999973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of Copper Toxicity and Tolerance in the Aquatic Moss
    Bačkor M; Goga M; Singh P; Tuptová V
    Plants (Basel); 2023 Oct; 12(20):. PubMed ID: 37896070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.