BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 32635674)

  • 1. An Interface-Particle Interaction Approach for Evaluation of the Co-Encapsulation Efficiency of Cells in a Flow-Focusing Droplet Generator.
    Yaghoobi M; Saidi MS; Ghadami S; Kashaninejad N
    Sensors (Basel); 2020 Jul; 20(13):. PubMed ID: 32635674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning detector for high precision monitoring of cell encapsulation statistics in microfluidic droplets.
    Gardner K; Uddin MM; Tran L; Pham T; Vanapalli S; Li W
    Lab Chip; 2022 Oct; 22(21):4067-4080. PubMed ID: 36214344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Droplet-based microfluidics in biomedical applications.
    Amirifar L; Besanjideh M; Nasiri R; Shamloo A; Nasrollahi F; de Barros NR; Davoodi E; Erdem A; Mahmoodi M; Hosseini V; Montazerian H; Jahangiry J; Darabi MA; Haghniaz R; Dokmeci MR; Annabi N; Ahadian S; Khademhosseini A
    Biofabrication; 2022 Jan; 14(2):. PubMed ID: 34781274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Pipette-Tip Based Method for Seeding Cells to Droplet Microfluidic Platforms.
    Sinha N; Subedi N; Wimmers F; Soennichsen M; Tel J
    J Vis Exp; 2019 Feb; (144):. PubMed ID: 30799837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An ultra high-efficiency droplet microfluidics platform using automatically synchronized droplet pairing and merging.
    Zhang H; Guzman AR; Wippold JA; Li Y; Dai J; Huang C; Han A
    Lab Chip; 2020 Nov; 20(21):3948-3959. PubMed ID: 32935710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Breaking through the Poisson Distribution: A compact high-efficiency droplet microfluidic system for single-bead encapsulation and digital immunoassay detection.
    Yue X; Fang X; Sun T; Yi J; Kuang X; Guo Q; Wang Y; Gu H; Xu H
    Biosens Bioelectron; 2022 Sep; 211():114384. PubMed ID: 35609455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic device for the high-throughput and selective encapsulation of single target cells.
    Nakamura M; Matsumoto M; Ito T; Hidaka I; Tatsuta H; Katsumoto Y
    Lab Chip; 2024 May; 24(11):2958-2967. PubMed ID: 38722067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective cell encapsulation, lysis, pico-injection and size-controlled droplet generation using traveling surface acoustic waves in a microfluidic device.
    Mutafopulos K; Lu PJ; Garry R; Spink P; Weitz DA
    Lab Chip; 2020 Nov; 20(21):3914-3921. PubMed ID: 32966482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled droplet microfluidic systems for multistep chemical and biological assays.
    Kaminski TS; Garstecki P
    Chem Soc Rev; 2017 Oct; 46(20):6210-6226. PubMed ID: 28858351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-efficiency single cell encapsulation and size selective capture of cells in picoliter droplets based on hydrodynamic micro-vortices.
    Kamalakshakurup G; Lee AP
    Lab Chip; 2017 Dec; 17(24):4324-4333. PubMed ID: 29138790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Encapsulation of single cells on a microfluidic device integrating droplet generation with fluorescence-activated droplet sorting.
    Wu L; Chen P; Dong Y; Feng X; Liu BF
    Biomed Microdevices; 2013 Jun; 15(3):553-60. PubMed ID: 23404263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduction in microparticle adsorption using a lateral interconnection method in a PDMS-based microfluidic device.
    Lee DH; Park JK
    Electrophoresis; 2013 Dec; 34(22-23):3119-25. PubMed ID: 24105848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Label-free active single-cell encapsulation enabled by microvalve-based on-demand droplet generation and real-time image processing.
    Wang Y; Wang Y; Wang X; Sun W; Yang F; Yao X; Pan T; Li B; Chu J
    Talanta; 2024 Aug; 276():126299. PubMed ID: 38788384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Droplet-based microfluidics.
    Sharma S; Srisa-Art M; Scott S; Asthana A; Cass A
    Methods Mol Biol; 2013; 949():207-30. PubMed ID: 23329446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-droplet cell concentration using dielectrophoresis.
    Han SI; Soo Kim H; Han A
    Biosens Bioelectron; 2017 Nov; 97():41-45. PubMed ID: 28554044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microneedle-assisted microfluidic flow focusing for versatile and high throughput water-in-water droplet generation.
    Jeyhani M; Gnyawali V; Abbasi N; Hwang DK; Tsai SSH
    J Colloid Interface Sci; 2019 Oct; 553():382-389. PubMed ID: 31226629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bio-electrospraying and droplet-based microfluidics: control of cell numbers within living residues.
    Hong J; deMello AJ; Jayasinghe SN
    Biomed Mater; 2010 Apr; 5(2):21001. PubMed ID: 20234087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic particle zipper enables controlled loading of droplets with distinct particle types.
    Delley CL; Abate AR
    Lab Chip; 2020 Jul; 20(14):2465-2472. PubMed ID: 32531004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deterministic droplet-based co-encapsulation and pairing of microparticles via active sorting and downstream merging.
    Chung MT; Núñez D; Cai D; Kurabayashi K
    Lab Chip; 2017 Oct; 17(21):3664-3671. PubMed ID: 28967663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing droplet transition capabilities using sloped microfluidic channel geometry for stable droplet operation.
    Wippold JA; Huang C; Stratis-Cullum D; Han A
    Biomed Microdevices; 2020 Jan; 22(1):15. PubMed ID: 31965327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.