These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 32635712)

  • 21. Properties for Thermally Conductive Interfaces with Wide Band Gap Materials.
    Khan S; Angeles F; Wright J; Vishwakarma S; Ortiz VH; Guzman E; Kargar F; Balandin AA; Smith DJ; Jena D; Xing HG; Wilson R
    ACS Appl Mater Interfaces; 2022 Aug; 14(31):36178-36188. PubMed ID: 35895030
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of the electron-phonon coupling in tuning the thermal boundary conductance at metal-dielectric interfaces by inserting ultrathin metal interlayers.
    Oommen SM; Pisana S
    J Phys Condens Matter; 2021 Feb; 33(8):085702. PubMed ID: 33207329
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanostructures Significantly Enhance Thermal Transport across Solid Interfaces.
    Lee E; Zhang T; Yoo T; Guo Z; Luo T
    ACS Appl Mater Interfaces; 2016 Dec; 8(51):35505-35512. PubMed ID: 27983798
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interlaced, Nanostructured Interface with Graphene Buffer Layer Reduces Thermal Boundary Resistance in Nano/Microelectronic Systems.
    Tao L; Theruvakkattil Sreenivasan S; Shahsavari R
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):989-998. PubMed ID: 28073276
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermal transfer in graphene-interfaced materials: contact resistance and interface engineering.
    Wang H; Gong J; Pei Y; Xu Z
    ACS Appl Mater Interfaces; 2013 Apr; 5(7):2599-603. PubMed ID: 23465732
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermally conductive ultra-low-k dielectric layers based on two-dimensional covalent organic frameworks.
    Evans AM; Giri A; Sangwan VK; Xun S; Bartnof M; Torres-Castanedo CG; Balch HB; Rahn MS; Bradshaw NP; Vitaku E; Burke DW; Li H; Bedzyk MJ; Wang F; Brédas JL; Malen JA; McGaughey AJH; Hersam MC; Dichtel WR; Hopkins PE
    Nat Mater; 2021 Aug; 20(8):1142-1148. PubMed ID: 33737728
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cross-Plane Thermal Conductance of Phosphonate-Based Self-Assembled Monolayers and Self-Assembled Nanodielectrics.
    Lu B; Wang B; Chen Y; Facchetti A; Marks TJ; Balogun O
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):34901-34909. PubMed ID: 32633937
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transparent Conductive Dielectric-Metal-Dielectric Structures for Electrochromic Applications Fabricated by High-Power Impulse Magnetron Sputtering.
    Najafi-Ashtiani H; Akhavan B; Jing F; Bilek MM
    ACS Appl Mater Interfaces; 2019 Apr; 11(16):14871-14881. PubMed ID: 30924631
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The role of interface thermal boundary resistance in the overall thermal conductivity of Si-Ge multilayered structures.
    Samvedi V; Tomar V
    Nanotechnology; 2009 Sep; 20(36):365701. PubMed ID: 19687536
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Silicide/Silicon Hetero-Junction Structure for Thermoelectric Applications.
    Jun D; Kim S; Choi W; Kim J; Zyung T; Jang M
    J Nanosci Nanotechnol; 2015 Oct; 15(10):7472-5. PubMed ID: 26726353
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High Thermal Boundary Conductance across Bonded Heterogeneous GaN-SiC Interfaces.
    Mu F; Cheng Z; Shi J; Shin S; Xu B; Shiomi J; Graham S; Suga T
    ACS Appl Mater Interfaces; 2019 Sep; 11(36):33428-33434. PubMed ID: 31408316
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermal Transport across SiC-Water Interfaces.
    Gonzalez-Valle CU; Kumar S; Ramos-Alvarado B
    ACS Appl Mater Interfaces; 2018 Aug; 10(34):29179-29186. PubMed ID: 30063129
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The interfaces of lanthanum oxide-based subnanometer EOT gate dielectrics.
    Wong H; Zhou J; Zhang J; Jin H; Kakushima K; Iwai H
    Nanoscale Res Lett; 2014; 9(1):472. PubMed ID: 25246873
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lateral heat flow distribution and defect-dependent thermal resistance in an individual silicon nanowire.
    Lee SY; Lee WY; Thong JT; Kim GS; Lee SK
    Nanotechnology; 2016 Mar; 27(11):115402. PubMed ID: 26878139
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Giant Thermal Transport Tuning at a Metal/Ferroelectric Interface.
    Zang Y; Di C; Geng Z; Yan X; Ji D; Zheng N; Jiang X; Fu H; Wang J; Guo W; Sun H; Han L; Zhou Y; Gu Z; Kong D; Aramberri H; Cazorla C; Íñiguez J; Rurali R; Chen L; Zhou J; Wu D; Lu M; Nie Y; Chen Y; Pan X
    Adv Mater; 2022 Jan; 34(3):e2105778. PubMed ID: 34676925
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interfacial Engineering of Silicon Carbide Nanowire/Cellulose Microcrystal Paper toward High Thermal Conductivity.
    Yao Y; Zeng X; Pan G; Sun J; Hu J; Huang Y; Sun R; Xu JB; Wong CP
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):31248-31255. PubMed ID: 27788322
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Geometry and temperature effects of the interfacial thermal conductance in copper- and nickel-graphene nanocomposites.
    Chang SW; Nair AK; Buehler MJ
    J Phys Condens Matter; 2012 Jun; 24(24):245301. PubMed ID: 22611110
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High Thermal Conductivity of Sandwich-Structured Flexible Thermal Interface Materials.
    Jing L; Cheng R; Tasoglu M; Wang Z; Wang Q; Zhai H; Shen S; Cohen-Karni T; Garg R; Lee I
    Small; 2023 Mar; 19(11):e2207015. PubMed ID: 36642828
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermal Transport and Mechanical Stress Mapping of a Compression Bonded GaN/Diamond Interface for Vertical Power Devices.
    Delmas W; Jarzembski A; Bahr M; McDonald A; Hodges W; Lu P; Deitz J; Ziade E; Piontkowski ZT; Yates L
    ACS Appl Mater Interfaces; 2024 Feb; 16(8):11003-11012. PubMed ID: 38373710
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Self-Assembled Three-Dimensional Bi
    Thongkham W; Lertsatitthanakorn C; Jiramitmongkon K; Tantisantisom K; Boonkoom T; Jitpukdee M; Sinthiptharakoon K; Klamchuen A; Liangruksa M; Khanchaitit P
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):6624-6633. PubMed ID: 30656940
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.