These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 32635731)

  • 1. Slip Effects on Ionic Current of Viscoelectric Electroviscous Flows through Different Length Nanofluidic Channels.
    Sen T; Barisik M
    Langmuir; 2020 Aug; 36(31):9191-9203. PubMed ID: 32635731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electroviscous effect on fluid drag in a microchannel with large zeta potential.
    Jing D; Bhushan B
    Beilstein J Nanotechnol; 2015; 6():2207-16. PubMed ID: 26734512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrokinetics of the silica and aqueous electrolyte solution interface: Viscoelectric effects.
    Hsu WL; Daiguji H; Dunstan DE; Davidson MR; Harvie DJE
    Adv Colloid Interface Sci; 2016 Aug; 234():108-131. PubMed ID: 27217082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of surface charge and boundary slip on time-periodic pressure-driven flow and electrokinetic energy conversion in a nanotube.
    Buren M; Jian Y; Zhao Y; Chang L; Liu Q
    Beilstein J Nanotechnol; 2019; 10():1628-1635. PubMed ID: 31467824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electroviscous effects in nanofluidic channels.
    Wang M; Chang CC; Yang RJ
    J Chem Phys; 2010 Jan; 132(2):024701. PubMed ID: 20095688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slip-enhanced electrokinetic energy conversion in nanofluidic channels.
    Ren Y; Stein D
    Nanotechnology; 2008 May; 19(19):195707. PubMed ID: 21825725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface charge-dependent hydrodynamic properties of an electroosmotic slip flow.
    Rezaei M; Azimian AR; Pishevar AR
    Phys Chem Chem Phys; 2018 Dec; 20(48):30365-30375. PubMed ID: 30489580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of boundary slip and surface charge on the pressure-driven flow.
    Jing D; Bhushan B
    J Colloid Interface Sci; 2013 Feb; 392():15-26. PubMed ID: 23137902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electroviscous resistance of nanofluidic bends.
    Berry JD; Foong AE; Lade CE; Biscombe CJ; Davidson MR; Harvie DJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):043008. PubMed ID: 25375594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Apparent slip due to the motion of suspended particles in flows of electrolyte solutions.
    Lauga E
    Langmuir; 2004 Sep; 20(20):8924-30. PubMed ID: 15379528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regimes of streaming potential in cylindrical nano-pores in presence of finite sized ions and charge induced thickening: an analytical approach.
    Bandopadhyay A; Goswami P; Chakraborty S
    J Chem Phys; 2013 Dec; 139(22):224503. PubMed ID: 24329074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of surface charge density and its effect on boundary slip.
    Jing D; Bhushan B
    Langmuir; 2013 Jun; 29(23):6953-63. PubMed ID: 23683055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of electrical double layer on electric conductivity and pressure drop in a pressure-driven microchannel flow.
    Ban H; Lin B; Song Z
    Biomicrofluidics; 2010 Feb; 4(1):14104. PubMed ID: 20644673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A method to determine zeta potential and Navier slip coefficient of microchannels.
    Park HM
    J Colloid Interface Sci; 2010 Jul; 347(1):132-41. PubMed ID: 20362996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Slip flow in graphene nanochannels.
    Kannam SK; Todd BD; Hansen JS; Daivis PJ
    J Chem Phys; 2011 Oct; 135(14):144701. PubMed ID: 22010725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ionic size dependent electroviscous effects in ion-selective nanopores.
    Bandopadhyay A; Hossain SS; Chakraborty S
    Langmuir; 2014 Jun; 30(24):7251-8. PubMed ID: 24853329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of viscoelectric effect on diffusioosmotic transport in nanochannel.
    Mehta SK; Mondal PK
    Electrophoresis; 2023 Jan; 44(1-2):44-52. PubMed ID: 35775948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analytical solutions for viscoelectric effects in electrokinetic nanochannels.
    Ma K; Ramachandran A; Santiago JG
    Electrophoresis; 2024 Apr; 45(7-8):676-686. PubMed ID: 38350722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling the combined effect of surface roughness and shear rate on slip flow of simple fluids.
    Niavarani A; Priezjev NV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011606. PubMed ID: 20365383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime: Application to plane boundaries.
    Silva G; Semiao V
    Phys Rev E; 2017 Jul; 96(1-1):013311. PubMed ID: 29347253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.