These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 32635731)

  • 41. The study of surface wetting, nanobubbles and boundary slip with an applied voltage: A review.
    Pan Y; Bhushan B; Zhao X
    Beilstein J Nanotechnol; 2014; 5():1042-65. PubMed ID: 25161839
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Slip transition in dynamic wetting for a generalized Navier boundary condition.
    Rougier V; Cellier J; Gomina M; Bréard J
    J Colloid Interface Sci; 2021 Feb; 583():448-458. PubMed ID: 33017692
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Unified slip boundary condition for fluid flows.
    Thalakkottor JJ; Mohseni K
    Phys Rev E; 2016 Aug; 94(2-1):023113. PubMed ID: 27627398
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Streaming potential and electroviscous effects in soft nanochannels: towards designing more efficient nanofluidic electrochemomechanical energy converters.
    Chanda S; Sinha S; Das S
    Soft Matter; 2014 Oct; 10(38):7558-68. PubMed ID: 25112236
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of pH on Effective Slip Length and Surface Charge at Solid-Oil Interfaces of Roughness-Induced Surfaces.
    Tian P; Li Y
    Micromachines (Basel); 2021 Jun; 12(7):. PubMed ID: 34206835
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A review on slip boundary conditions at the nanoscale: recent development and applications.
    Wang R; Chai J; Luo B; Liu X; Zhang J; Wu M; Wei M; Ma Z
    Beilstein J Nanotechnol; 2021; 12():1237-1251. PubMed ID: 34868800
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Microscopic origin of wall slip during flow of an entangled DNA solution in microfluidics: Flow induced chain stretching versus chain desorption.
    Hemminger O; Boukany PE
    Biomicrofluidics; 2017 Jul; 11(4):044118. PubMed ID: 28936276
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effective slip for flow in a rotating channel bounded by stick-slip walls.
    Ng CO
    Phys Rev E; 2016 Dec; 94(6-1):063115. PubMed ID: 28085377
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Modeling of electrokinetic transport in silica nanofluidic channels.
    Wang M; Kang Q; Ben-Naim E
    Anal Chim Acta; 2010 Apr; 664(2):158-64. PubMed ID: 20363398
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Interfacial transport with mobile surface charges and consequences for ionic transport in carbon nanotubes.
    Mouterde T; Bocquet L
    Eur Phys J E Soft Matter; 2018 Dec; 41(12):148. PubMed ID: 30564898
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Boundary streaming with Navier boundary condition.
    Xie JH; Vanneste J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063010. PubMed ID: 25019882
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Particle/wall electroviscous effects at the micron scale: comparison between experiments, analytical and numerical models.
    Hernández Meza JM; Vélez-Cordero JR; Ramírez Saito A; Aranda-Espinoza S; Arauz-Lara JL; Yáñez Soto B
    J Phys Condens Matter; 2021 Dec; 34(9):. PubMed ID: 34818642
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A hybrid theoretical method for predicting electrokinetic energy conversion in nanochannels.
    Hu X; Nan Y; Kong X; Lu D; Wu J
    Phys Chem Chem Phys; 2020 Apr; 22(16):9110-9116. PubMed ID: 32301460
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electroviscous drag on squeezing motion in sphere-plane geometry.
    Rodríguez Matus M; Zhang Z; Benrahla Z; Majee A; Maali A; Würger A
    Phys Rev E; 2022 Jun; 105(6-1):064606. PubMed ID: 35854594
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Electrorheological effects and gating of membrane channels.
    Green ME
    J Theor Biol; 1989 Jun; 138(4):413-28. PubMed ID: 2480494
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Turbulent plane Poiseuille-Couette flow as a model for fluid slip over superhydrophobic surfaces.
    Nguyen QT; Papavassiliou DV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):063015. PubMed ID: 24483565
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Slip divergence of water flow in graphene nanochannels: the role of chirality.
    Wagemann E; Oyarzua E; Walther JH; Zambrano HA
    Phys Chem Chem Phys; 2017 Mar; 19(13):8646-8652. PubMed ID: 28195288
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Exact Solutions for Non-Isothermal Flows of Second Grade Fluid between Parallel Plates.
    Baranovskii ES
    Nanomaterials (Basel); 2023 Apr; 13(8):. PubMed ID: 37110994
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fast nonlinear ion transport via field-induced hydrodynamic slip in sub-20-nm hydrophilic nanofluidic transistors.
    Vermesh U; Choi JW; Vermesh O; Fan R; Nagarah J; Heath JR
    Nano Lett; 2009 Apr; 9(4):1315-9. PubMed ID: 19265427
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Entrance Effects Induced Rectified Ionic Transport in a Nanopore/Channel.
    Ma Y; Guo J; Jia L; Xie Y
    ACS Sens; 2018 Jan; 3(1):167-173. PubMed ID: 29235863
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.