These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 32636006)

  • 1. On the application of entropic half-life and statistical persistence decay for quantification of time dependency in human gait.
    Raffalt PC; Yentes JM
    J Biomech; 2020 Jul; 108():109893. PubMed ID: 32636006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Introducing Statistical Persistence Decay: A Quantification of Stride-to-Stride Time Interval Dependency in Human Gait.
    Raffalt PC; Yentes JM
    Ann Biomed Eng; 2018 Jan; 46(1):60-70. PubMed ID: 28948419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The impact of speed and time on gait dynamics.
    Thomas KS; Russell DM; Van Lunen BL; Colberg SR; Morrison S
    Hum Mov Sci; 2017 Aug; 54():320-330. PubMed ID: 28641172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How to Sync to the Beat of a Persistent Fractal Metronome without Falling Off the Treadmill?
    Roerdink M; Daffertshofer A; Marmelat V; Beek PJ
    PLoS One; 2015; 10(7):e0134148. PubMed ID: 26230254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complexity, fractal dynamics and determinism in treadmill ambulation: Implications for clinical biomechanists.
    Hollman JH; Watkins MK; Imhoff AC; Braun CE; Akervik KA; Ness DK
    Clin Biomech (Bristol, Avon); 2016 Aug; 37():91-97. PubMed ID: 27380204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of variability and gait dynamics in spatiotemporal variables between different self-paced treadmill control modes.
    Wei W; Kaiming Y; Yu Z; Yuyang Q; Chenhui W
    J Biomech; 2020 Sep; 110():109979. PubMed ID: 32827775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of treadmill walking on the stride interval dynamics of children.
    Fairley JA; Sejdić E; Chau T
    Hum Mov Sci; 2010 Dec; 29(6):987-98. PubMed ID: 20817323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Association between stride time fractality and gait adaptability during unperturbed and asymmetric walking.
    Ducharme SW; Liddy JJ; Haddad JM; Busa MA; Claxton LJ; van Emmerik REA
    Hum Mov Sci; 2018 Apr; 58():248-259. PubMed ID: 29505917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Persistent and anti-persistent pattern in stride-to-stride variability of treadmill walking: influence of rhythmic auditory cueing.
    Terrier P; Dériaz O
    Hum Mov Sci; 2012 Dec; 31(6):1585-97. PubMed ID: 23164626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of age and walking speed on long-range autocorrelations and fluctuation magnitude of stride duration.
    Bollens B; Crevecoeur F; Detrembleur C; Guillery E; Lejeune T
    Neuroscience; 2012 May; 210():234-42. PubMed ID: 22421102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validity and reliability of a portable gait analysis system for measuring spatiotemporal gait characteristics: comparison to an instrumented treadmill.
    Donath L; Faude O; Lichtenstein E; Nüesch C; Mündermann A
    J Neuroeng Rehabil; 2016 Jan; 13():6. PubMed ID: 26790409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Treadmill walking alters stride time dynamics in Parkinson's disease.
    Hollman JH; Von Arb HM; Budreck AM; Muehlemann A; Ness DK
    Gait Posture; 2020 Mar; 77():195-200. PubMed ID: 32058283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Re-interpreting detrended fluctuation analyses of stride-to-stride variability in human walking.
    Dingwell JB; Cusumano JP
    Gait Posture; 2010 Jul; 32(3):348-53. PubMed ID: 20605097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tightening Up the Control of Treadmill Walking: Effects of Maneuverability Range and Acoustic Pacing on Stride-to-Stride Fluctuations.
    Roerdink M; de Jonge CP; Smid LM; Daffertshofer A
    Front Physiol; 2019; 10():257. PubMed ID: 30967787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Outcome-dependent effects of walking speed and age on quantitative and qualitative gait measures.
    Hagoort I; Vuillerme N; Hortobágyi T; Lamoth CJ
    Gait Posture; 2022 Mar; 93():39-46. PubMed ID: 35063756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How normal is normal: Consequences of stride to stride variability, treadmill walking and age when using normative paediatric gait data.
    Oudenhoven LM; Booth ATC; Buizer AI; Harlaar J; van der Krogt MM
    Gait Posture; 2019 May; 70():289-297. PubMed ID: 30925353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Age-related differences in pelvic and trunk motion and gait adaptability at different walking speeds.
    Gimmon Y; Riemer R; Rashed H; Shapiro A; Debi R; Kurz I; Melzer I
    J Electromyogr Kinesiol; 2015 Oct; 25(5):791-9. PubMed ID: 26091623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diurnal variation in gait characteristics and transition speed.
    Bessot N; Lericollais R; Gauthier A; Sesboüé B; Bulla J; Moussay S
    Chronobiol Int; 2015 Feb; 32(1):136-42. PubMed ID: 25229209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Do humans optimally exploit redundancy to control step variability in walking?
    Dingwell JB; John J; Cusumano JP
    PLoS Comput Biol; 2010 Jul; 6(7):e1000856. PubMed ID: 20657664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal-spatial gait parameter models of very slow walking.
    Smith AJJ; Lemaire ED
    Gait Posture; 2018 Mar; 61():125-129. PubMed ID: 29331720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.