These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 32636016)

  • 1. Regulation of foot and ankle quasi-stiffness during human hopping across a range of frequencies.
    Kessler SE; Lichtwark GA; Welte LKM; Rainbow MJ; Kelly LA
    J Biomech; 2020 Jul; 108():109853. PubMed ID: 32636016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Midfoot passive stiffness affects foot and ankle kinematics and kinetics during the propulsive phase of walking.
    Magalhães FA; Fonseca ST; Araújo VL; Trede RG; Oliveira LM; Castor CGME; Pinto RZ; Souza TR
    J Biomech; 2021 Apr; 119():110328. PubMed ID: 33611052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hip external rotation stiffness and midfoot passive mechanical resistance are associated with lower limb movement in the frontal and transverse planes during gait.
    Cardoso TB; Ocarino JM; Fajardo CC; Paes BDC; Souza TR; Fonseca ST; Resende RA
    Gait Posture; 2020 Feb; 76():305-310. PubMed ID: 31887703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuromechanical adaptations of foot function to changes in surface stiffness during hopping.
    Birch JV; Kelly LA; Cresswell AG; Dixon SJ; Farris DJ
    J Appl Physiol (1985); 2021 Apr; 130(4):1196-1204. PubMed ID: 33571058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The modified Shriners Hospitals for Children Greenville (mSHCG) multi-segment foot model provides clinically acceptable measurements of ankle and midfoot angles: A dual fluoroscopy study.
    Roach KE; Foreman KB; MacWilliams BA; Karpos K; Nichols J; Anderson AE
    Gait Posture; 2021 Mar; 85():258-265. PubMed ID: 33626450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The relationship between supination resistance and the kinetics and kinematics of the foot and ankle during gait.
    McBride S; Dixon P; Mokha M; Samuel Cheng M
    Gait Posture; 2019 Sep; 73():239-245. PubMed ID: 31376750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuromechanical adaptation to hopping with an elastic ankle-foot orthosis.
    Ferris DP; Bohra ZA; Lukos JR; Kinnaird CR
    J Appl Physiol (1985); 2006 Jan; 100(1):163-70. PubMed ID: 16179395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determinant of leg stiffness during hopping is frequency-dependent.
    Hobara H; Inoue K; Omuro K; Muraoka T; Kanosue K
    Eur J Appl Physiol; 2011 Sep; 111(9):2195-201. PubMed ID: 21318314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The human foot functions like a spring of adjustable stiffness during running.
    Holowka NB; Richards A; Sibson BE; Lieberman DE
    J Exp Biol; 2021 Jan; 224(Pt 1):. PubMed ID: 33199449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantifying clinical misinterpretations associated to one-segment kinetic foot modelling in both a healthy and patient population.
    Eerdekens M; Staes F; Matricali GA; Wuite S; Peerlinck K; Deschamps K
    Clin Biomech (Bristol, Avon); 2019 Jul; 67():160-165. PubMed ID: 31121429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One- and multi-segment foot models lead to opposite results on ankle joint kinematics during gait: Implications for clinical assessment.
    Pothrat C; Authier G; Viehweger E; Berton E; Rao G
    Clin Biomech (Bristol, Avon); 2015 Jun; 30(5):493-9. PubMed ID: 25812728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leg and joint stiffness in human hopping.
    Kuitunen S; Ogiso K; Komi PV
    Scand J Med Sci Sports; 2011 Dec; 21(6):e159-67. PubMed ID: 22126723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in ankle and foot kinematic after fixed-bearing total ankle replacement.
    Deleu PA; Naaim A; Chèze L; Dumas R; Devos Bevernage B; Birch I; Besse JL; Leemrijse T
    J Biomech; 2022 May; 136():111060. PubMed ID: 35366500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intralimb compensation strategy depends on the nature of joint perturbation in human hopping.
    Chang YH; Roiz RA; Auyang AG
    J Biomech; 2008; 41(9):1832-9. PubMed ID: 18499112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Foot and ankle kinematics in rheumatoid arthritis: influence of foot and ankle joint and leg tendon pathologies.
    Dubbeldam R; Baan H; Nene AV; Drossaers-Bakker KW; van de Laar MA; Hermens HJ; Buurke JH
    Arthritis Care Res (Hoboken); 2013 Apr; 65(4):503-11. PubMed ID: 22972768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanics of the foot and ankle joints during running using a multi-segment foot model compared with a single-segment model.
    Wager JC; Challis JH
    PLoS One; 2024; 19(2):e0294691. PubMed ID: 38349945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hopping with degressive spring stiffness in a full-leg exoskeleton lowers metabolic cost compared with progressive spring stiffness and hopping without assistance.
    Allen SP; Grabowski AM
    J Appl Physiol (1985); 2019 Aug; 127(2):520-530. PubMed ID: 31219770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Foot and ankle kinematics in chronic ankle instability subjects using a midfoot strike pattern when running, including influence of taping.
    Deschamps K; Matricali GA; Dingenen B; De Boeck J; Bronselaer S; Staes F
    Clin Biomech (Bristol, Avon); 2018 May; 54():1-7. PubMed ID: 29501914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leg stiffness primarily depends on ankle stiffness during human hopping.
    Farley CT; Morgenroth DC
    J Biomech; 1999 Mar; 32(3):267-73. PubMed ID: 10093026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of taping on multi-segmental foot kinematic patterns during walking in persons with chronic ankle instability.
    Dingenen B; Deschamps K; Delchambre F; Van Peer E; Staes FF; Matricali GA
    J Sci Med Sport; 2017 Sep; 20(9):835-840. PubMed ID: 28483559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.