These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 32636431)

  • 1. Aberration retrieval by incorporating customized priors for estimating Zernike coefficients.
    Wang B; Wang X; An Q
    Sci Rep; 2020 Jul; 10(1):11137. PubMed ID: 32636431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extended Nijboer-Zernike approach to aberration and birefringence retrieval in a high-numerical-aperture optical system.
    Braat JJ; Dirksen P; Janssen AJ; van Haver S; van de Nes AS
    J Opt Soc Am A Opt Image Sci Vis; 2005 Dec; 22(12):2635-50. PubMed ID: 16396023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase retrieval and Zernike decomposition using measured intensity data and the estimated electric field.
    Zingarelli JC; Cain SC
    Appl Opt; 2013 Nov; 52(31):7435-44. PubMed ID: 24216641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extended Nijboer-Zernike representation of the vector field in the focal region of an aberrated high-aperture optical system.
    Braat JJ; Dirksen P; Janssen AJ; van de Nes AS
    J Opt Soc Am A Opt Image Sci Vis; 2003 Dec; 20(12):2281-92. PubMed ID: 14686507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modal-based phase retrieval for adaptive optics.
    Antonello J; Verhaegen M
    J Opt Soc Am A Opt Image Sci Vis; 2015 Jun; 32(6):1160-70. PubMed ID: 26367051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modal-based nonlinear optimization algorithm for wavefront measurement with under-sampled data.
    Zhao L; Bai J; Hao Y; Jing H; Wang C; Lu B; Liang Y; Wang K
    Opt Lett; 2020 Oct; 45(19):5456-5459. PubMed ID: 33001918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Corneal asphericity change after excimer laser hyperopic surgery: theoretical effects on corneal profiles and corresponding Zernike expansions.
    Gatinel D; Malet J; Hoang-Xuan T; Azar DT
    Invest Ophthalmol Vis Sci; 2004 May; 45(5):1349-59. PubMed ID: 15111588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aberration estimation from single point image in a simulated adaptive optics system.
    Grisan E; Frassetto F; Da Deppo V; Naletto G; Ruggeri A
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():3173-6. PubMed ID: 17282918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validity of scaling zernike coefficients to a larger diameter for refractive surgery.
    Dai GM
    J Refract Surg; 2011 Nov; 27(11):837-41. PubMed ID: 22045575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of Zernike polynomials towards accelerated adaptive focusing of transcranial high intensity focused ultrasound.
    Kaye EA; Hertzberg Y; Marx M; Werner B; Navon G; Levoy M; Pauly KB
    Med Phys; 2012 Oct; 39(10):6254-63. PubMed ID: 23039661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Statistical variation of aberration structure and image quality in a normal population of healthy eyes.
    Thibos LN; Hong X; Bradley A; Cheng X
    J Opt Soc Am A Opt Image Sci Vis; 2002 Dec; 19(12):2329-48. PubMed ID: 12469728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extended Nijboer-Zernike approach for the computation of optical point-spread functions.
    Janssen AJ
    J Opt Soc Am A Opt Image Sci Vis; 2002 May; 19(5):849-57. PubMed ID: 11999961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noise robust Zernike phase retrieval via learning based algorithm only with 2-step phase shift measurements.
    Kim H; Jeong Y; Lee K; Jeong Y
    Opt Express; 2023 Sep; 31(19):30248-30266. PubMed ID: 37710571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of an extended Nijboer-Zernike approach for the computation of optical point-spread functions.
    Braat J; Dirksen P; Janssen AJ
    J Opt Soc Am A Opt Image Sci Vis; 2002 May; 19(5):858-70. PubMed ID: 11999962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Demonstration of an optimised focal field with long focal depth and high transmission obtained with the Extended Nijboer-Zernike theory.
    Konijnenberg AP; Wei L; Kumar N; Filho LC; Cisotto L; Pereira SF; Urbach HP
    Opt Express; 2014 Jan; 22(1):311-24. PubMed ID: 24514993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On a propagation-invariant, orthogonal modal expansion on the unit disk: going beyond Nijboer-Zernike theory of aberrations.
    El Gawhary O
    Opt Lett; 2015 Jun; 40(11):2626-9. PubMed ID: 26030574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Double Zernike expansion of the optical aberration function from its power series expansion.
    Braat JJ; Janssen AJ
    J Opt Soc Am A Opt Image Sci Vis; 2013 Jun; 30(6):1213-22. PubMed ID: 24323109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating field-dependent nodal aberration theory coefficients from Zernike full-field displays by utilizing eighth-order astigmatism.
    Schiesser EM; Bauer A; Rolland JP
    J Opt Soc Am A Opt Image Sci Vis; 2019 Dec; 36(12):2115-2128. PubMed ID: 31873386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linear phase retrieval with a single far-field image based on Zernike polynomials.
    Li M; Li XY
    Opt Express; 2009 Aug; 17(17):15257-63. PubMed ID: 19688004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase retrieval based on the vectorial model of point spread function.
    Hieu Thao N; Soloviev O; Verhaegen M
    J Opt Soc Am A Opt Image Sci Vis; 2020 Jan; 37(1):16-26. PubMed ID: 32118876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.