These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 32636529)

  • 1. A Model for Estimating the Impact of Orthophosphate on Copper in Water.
    Lytle DA; Schock MR; Leo J; Barnes B
    J Am Water Works Assoc; 2018 Oct; 110(10):E1-E15. PubMed ID: 32636529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Considering a Utility-Centric Framework Based on "Minimum Orthophosphate" Criteria for Mitigation of Elevated Cuprosolvency in Drinking Water.
    Kriss RB; Smith E; Byrd G; Schock M; Edwards MA
    Environ Sci Technol; 2024 Mar; 58(12):5606-5615. PubMed ID: 38470122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of the chemical composition of drinking water on cuprosolvency by biofilm bacteria.
    Critchley MM; Cromar NJ; McClure NC; Fallowfield HJ
    J Appl Microbiol; 2003; 94(3):501-7. PubMed ID: 12588559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of water chemistry on the dissolution rate of the lead corrosion product hydrocerussite.
    Noel JD; Wang Y; Giammar DE
    Water Res; 2014 May; 54():237-46. PubMed ID: 24576699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Corrosion control in water supply systems: effect of pH, alkalinity, and orthophosphate on lead and copper leaching from brass plumbing.
    Tam YS; Elefsiniotis P
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 Oct; 44(12):1251-60. PubMed ID: 19847713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Georgeite: A Rare Copper Mineral with Important Drinking Water Implications.
    Lytle DA; Wahman D; Schock MR; Nadagouda M; Harmon S; Webster K; Botkins J
    Chem Eng J; 2019; 355():1-10. PubMed ID: 31275053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoscale investigation of the impact of pH and orthophosphate on the corrosion of copper surfaces in water.
    Lewandowski BR; Lytle DA; Garno JC
    Langmuir; 2010 Sep; 26(18):14671-9. PubMed ID: 20799694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of water quality on chlorine demand of corroding copper.
    Lytle DA; Liggett J
    Water Res; 2016 Apr; 92():11-21. PubMed ID: 26826646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quartz Crystal Microbalance with Dissipation: A New Approach of Examining Corrosion of New Copper Surfaces in Drinking Water.
    Tang M; Harmon S; Nadagouda MN; Lytle DA
    Environ Sci Technol; 2021 Jul; ():. PubMed ID: 34319119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Response of microbial growth to orthophosphate and organic carbon influx in copper and plastic based plumbing water systems.
    Park SK; Kim YK; Choi SC
    Chemosphere; 2008 Jul; 72(7):1027-34. PubMed ID: 18495203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biofilms and microbially influenced cuprosolvency in domestic copper plumbing systems.
    Critchley MM; Cromar NJ; McClure N; Fallowfield HJ
    J Appl Microbiol; 2001 Oct; 91(4):646-51. PubMed ID: 11576301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The inhibition of Pb(IV) oxide formation in chlorinated water by orthophosphate.
    Lytle DA; Schock MR; Scheckel K
    Environ Sci Technol; 2009 Sep; 43(17):6624-31. PubMed ID: 19764227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of blending of desalinated water with treated surface drinking water on copper and lead release.
    Liu H; Schonberger KD; Korshin GV; Ferguson JF; Meyerhofer P; Desormeaux E; Luckenbach H
    Water Res; 2010 Jul; 44(14):4057-66. PubMed ID: 20570313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of orthophosphate on lead release from pipe scale in high pH, low alkalinity water.
    Bae Y; Pasteris JD; Giammar DE
    Water Res; 2020 Jun; 177():115764. PubMed ID: 32305699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorous removal in batch systems using ferric chloride in the presence of activated sludges.
    Caravelli AH; Contreras EM; Zaritzky NE
    J Hazard Mater; 2010 May; 177(1-3):199-208. PubMed ID: 20042277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chlorine Reduction Kinetics and its Mass Balance in Copper Premise Plumbing Systems During Corrosion Events.
    Vargas IT; Anguita JM; Pastén PA; Pizarro GE
    Materials (Basel); 2019 Nov; 12(22):. PubMed ID: 31717254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of orthophosphate as a corrosion inhibitor in chloraminated solutions containing tetravalent lead corrosion product PbO2.
    Ng DQ; Strathmann TJ; Lin YP
    Environ Sci Technol; 2012 Oct; 46(20):11062-9. PubMed ID: 22958199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring dissolved orthophosphate in a struvite precipitation reactor with a voltammetric electronic tongue.
    Aguado D; Barat R; Soto J; Martínez-Mañez R
    Talanta; 2016 Oct; 159():80-86. PubMed ID: 27474282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of three corrosion inhibitors in simulated partial lead service line replacements.
    Kogo A; Payne SJ; Andrews RC
    J Hazard Mater; 2017 May; 329():211-221. PubMed ID: 28178636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of pH and carbonate concentration on dissolution rates of the lead corrosion product PbO(2).
    Xie Y; Wang Y; Singhal V; Giammar DE
    Environ Sci Technol; 2010 Feb; 44(3):1093-9. PubMed ID: 20063875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.