BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 32636625)

  • 1. Affibody-Modified Gd@C-Dots with Efficient Renal Clearance for Enhanced MRI of EGFR Expression in Non-Small-Cell Lung Cancer.
    Wu Y; Li H; Yan Y; Wang K; Cheng Y; Li Y; Zhu X; Xie J; Sun X
    Int J Nanomedicine; 2020; 15():4691-4703. PubMed ID: 32636625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gd-encapsulated carbonaceous dots with efficient renal clearance for magnetic resonance imaging.
    Chen H; Wang GD; Tang W; Todd T; Zhen Z; Tsang C; Hekmatyar K; Cowger T; Hubbard R; Zhang W; Stickney J; Shen B; Xie J
    Adv Mater; 2014 Oct; 26(39):6761-6766. PubMed ID: 25178894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gd-encapsulated carbonaceous dots for accurate characterization of tumor vessel permeability in magnetic resonance imaging.
    Wu Y; Yan Y; Gao X; Yang L; Li Y; Guo X; Xie J; Wang K; Sun X
    Nanomedicine; 2019 Oct; 21():102074. PubMed ID: 31376571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of four affibody-based near-infrared fluorescent probes for optical imaging of epidermal growth factor receptor positive tumors.
    Qi S; Miao Z; Liu H; Xu Y; Feng Y; Cheng Z
    Bioconjug Chem; 2012 Jun; 23(6):1149-56. PubMed ID: 22621238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of two site-specifically (18)F-labeled affibodies for PET imaging of EGFR positive tumors.
    Su X; Cheng K; Jeon J; Shen B; Venturin GT; Hu X; Rao J; Chin FT; Wu H; Cheng Z
    Mol Pharm; 2014 Nov; 11(11):3947-56. PubMed ID: 24972326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Image-guided selection of Gd@C-dots as sensitizers to improve radiotherapy of non-small cell lung cancer.
    Ma X; Lee C; Zhang T; Cai J; Wang H; Jiang F; Wu Z; Xie J; Jiang G; Li Z
    J Nanobiotechnology; 2021 Sep; 19(1):284. PubMed ID: 34551763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PET imaging of epidermal growth factor receptor expression in tumours using 89Zr-labelled ZEGFR:2377 affibody molecules.
    Garousi J; Andersson KG; Mitran B; Pichl ML; Ståhl S; Orlova A; Löfblom J; Tolmachev V
    Int J Oncol; 2016 Apr; 48(4):1325-32. PubMed ID: 26847636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gd
    Liu Y; Zhi X; Hou W; Xia F; Zhang J; Li L; Hong Y; Yan H; Peng C; de la Fuentea JM; Song J; Cui D
    Nanoscale; 2018 Oct; 10(40):19052-19063. PubMed ID: 30283946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of radiocobalt as a label improves imaging of EGFR using DOTA-conjugated Affibody molecule.
    Garousi J; Andersson KG; Dam JH; Olsen BB; Mitran B; Orlova A; Buijs J; Ståhl S; Löfblom J; Thisgaard H; Tolmachev V
    Sci Rep; 2017 Jul; 7(1):5961. PubMed ID: 28729680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ZnO-Based Nanoplatforms for Labeling and Treatment of Mouse Tumors without Detectable Toxic Side Effects.
    Ye DX; Ma YY; Zhao W; Cao HM; Kong JL; Xiong HM; Möhwald H
    ACS Nano; 2016 Apr; 10(4):4294-300. PubMed ID: 27018822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PET of EGFR expression with an 18F-labeled affibody molecule.
    Miao Z; Ren G; Liu H; Qi S; Wu S; Cheng Z
    J Nucl Med; 2012 Jul; 53(7):1110-8. PubMed ID: 22689926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immuno-PET imaging for non-invasive assessment of cetuximab accumulation in non-small cell lung cancer.
    Yamaguchi A; Achmad A; Hanaoka H; Heryanto YD; Bhattarai A; Ratianto ; Khongorzul E; Shintawati R; Kartamihardja AAP; Kanai A; Sugo Y; S Ishioka N; Higuchi T; Tsushima Y
    BMC Cancer; 2019 Oct; 19(1):1000. PubMed ID: 31651282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toxicity evaluation of Gd2O3@SiO2 nanoparticles prepared by laser ablation in liquid as MRI contrast agents in vivo.
    Tian X; Yang F; Yang C; Peng Y; Chen D; Zhu J; He F; Li L; Chen X
    Int J Nanomedicine; 2014; 9():4043-53. PubMed ID: 25187708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. pH-responsive theranostic nanocomposites as synergistically enhancing positive and negative magnetic resonance imaging contrast agents.
    Huang X; Yuan Y; Ruan W; Liu L; Liu M; Chen S; Zhou X
    J Nanobiotechnology; 2018 Mar; 16(1):30. PubMed ID: 29587764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative study on in vivo behavior of PEGylated gadolinium oxide nanoparticles and Magnevist as MRI contrast agent.
    Dai Y; Wu C; Wang S; Li Q; Zhang M; Li J; Xu K
    Nanomedicine; 2018 Feb; 14(2):547-555. PubMed ID: 29253637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Affibody-functionalized Ag
    Zhang Y; Zhao N; Qin Y; Wu F; Xu Z; Lan T; Cheng Z; Zhao P; Liu H
    Nanoscale; 2018 Sep; 10(35):16581-16590. PubMed ID: 30151510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanotemplate-engineered nanoparticles containing gadolinium for magnetic resonance imaging of tumors.
    Zhu D; Lu X; Hardy PA; Leggas M; Jay M
    Invest Radiol; 2008 Feb; 43(2):129-40. PubMed ID: 18197065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tissue gadolinium deposition in renally impaired rats exposed to different gadolinium-based MRI contrast agents: evaluation with inductively coupled plasma mass spectrometry (ICP-MS).
    Sato T; Ito K; Tamada T; Kanki A; Watanabe S; Nishimura H; Tanimoto D; Higashi H; Yamamoto A
    Magn Reson Imaging; 2013 Oct; 31(8):1412-7. PubMed ID: 23643157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Green Synthesis of Sub-10 nm Gadolinium-Based Nanoparticles for Sparkling Kidneys, Tumor, and Angiogenesis of Tumor-Bearing Mice in Magnetic Resonance Imaging.
    Zhang B; Yang W; Yu J; Guo W; Wang J; Liu S; Xiao Y; Shi D
    Adv Healthc Mater; 2017 Feb; 6(4):. PubMed ID: 28004887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual T
    Xu L; Hong SH; Sun Y; Sun Z; Shou K; Cheng K; Chen H; Huang D; Xu H; Cheng Z
    Nanomedicine; 2018 Aug; 14(6):1743-1752. PubMed ID: 29679743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.