These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 32636859)
1. Combining Crop Growth Modeling With Trait-Assisted Prediction Improved the Prediction of Genotype by Environment Interactions. Robert P; Le Gouis J; ; Rincent R Front Plant Sci; 2020; 11():827. PubMed ID: 32636859 [TBL] [Abstract][Full Text] [Related]
2. Combining Crop Growth Modeling and Statistical Genetic Modeling to Evaluate Phenotyping Strategies. Bustos-Korts D; Boer MP; Malosetti M; Chapman S; Chenu K; Zheng B; van Eeuwijk FA Front Plant Sci; 2019; 10():1491. PubMed ID: 31827479 [TBL] [Abstract][Full Text] [Related]
3. Phenomic selection in wheat breeding: prediction of the genotype-by-environment interaction in multi-environment breeding trials. Robert P; Goudemand E; Auzanneau J; Oury FX; Rolland B; Heumez E; Bouchet S; Caillebotte A; Mary-Huard T; Le Gouis J; Rincent R Theor Appl Genet; 2022 Oct; 135(10):3337-3356. PubMed ID: 35939074 [TBL] [Abstract][Full Text] [Related]
4. Integrating a growth degree-days based reaction norm methodology and multi-trait modeling for genomic prediction in wheat. Raffo MA; Sarup P; Andersen JR; Orabi J; Jahoor A; Jensen J Front Plant Sci; 2022; 13():939448. PubMed ID: 36119585 [TBL] [Abstract][Full Text] [Related]
5. Multi-Trait Multi-Environment Genomic Prediction of Agronomic Traits in Advanced Breeding Lines of Winter Wheat. Gill HS; Halder J; Zhang J; Brar NK; Rai TS; Hall C; Bernardo A; Amand PS; Bai G; Olson E; Ali S; Turnipseed B; Sehgal SK Front Plant Sci; 2021; 12():709545. PubMed ID: 34490011 [TBL] [Abstract][Full Text] [Related]
6. Using genomic prediction with crop growth models enables the prediction of associated traits in wheat. Jighly A; Thayalakumaran T; O'Leary GJ; Kant S; Panozzo J; Aggarwal R; Hessel D; Forrest KL; Technow F; Tibbits JFG; Totir R; Hayden MJ; Munkvold J; Daetwyler HD J Exp Bot; 2023 Mar; 74(5):1389-1402. PubMed ID: 36205117 [TBL] [Abstract][Full Text] [Related]
7. Multi-Trait, Multi-Environment Genomic Prediction of Durum Wheat With Genomic Best Linear Unbiased Predictor and Deep Learning Methods. Montesinos-López OA; Montesinos-López A; Tuberosa R; Maccaferri M; Sciara G; Ammar K; Crossa J Front Plant Sci; 2019; 10():1311. PubMed ID: 31787990 [TBL] [Abstract][Full Text] [Related]
8. Integrating biophysical crop growth models and whole genome prediction for their mutual benefit: a case study in wheat phenology. Jighly A; Weeks A; Christy B; O'Leary GJ; Kant S; Aggarwal R; Hessel D; Forrest KL; Technow F; Tibbits JFG; Totir R; Spangenberg GC; Hayden MJ; Munkvold J; Daetwyler HD J Exp Bot; 2023 Aug; 74(15):4415-4426. PubMed ID: 37177829 [TBL] [Abstract][Full Text] [Related]
9. Genomic Prediction Enhanced Sparse Testing for Multi-environment Trials. Jarquin D; Howard R; Crossa J; Beyene Y; Gowda M; Martini JWR; Covarrubias Pazaran G; Burgueño J; Pacheco A; Grondona M; Wimmer V; Prasanna BM G3 (Bethesda); 2020 Aug; 10(8):2725-2739. PubMed ID: 32527748 [TBL] [Abstract][Full Text] [Related]
10. Optimization of multi-environment trials for genomic selection based on crop models. Rincent R; Kuhn E; Monod H; Oury FX; Rousset M; Allard V; Le Gouis J Theor Appl Genet; 2017 Aug; 130(8):1735-1752. PubMed ID: 28540573 [TBL] [Abstract][Full Text] [Related]
11. GWAS revealed effect of genotype × environment interactions for grain yield of Nebraska winter wheat. Eltaher S; Baenziger PS; Belamkar V; Emara HA; Nower AA; Salem KFM; Alqudah AM; Sallam A BMC Genomics; 2021 Jan; 22(1):2. PubMed ID: 33388036 [TBL] [Abstract][Full Text] [Related]
12. Predicting Rice Heading Date Using an Integrated Approach Combining a Machine Learning Method and a Crop Growth Model. Chen TS; Aoike T; Yamasaki M; Kajiya-Kanegae H; Iwata H Front Genet; 2020; 11():599510. PubMed ID: 33391352 [TBL] [Abstract][Full Text] [Related]
13. Pea genomic selection for Italian environments. Annicchiarico P; Nazzicari N; Pecetti L; Romani M; Russi L BMC Genomics; 2019 Jul; 20(1):603. PubMed ID: 31331290 [TBL] [Abstract][Full Text] [Related]
14. Linking genetic markers and crop model parameters using neural networks to enhance genomic prediction of integrative traits. Larue F; Rouan L; Pot D; Rami JF; Luquet D; Beurier G Front Plant Sci; 2024; 15():1393965. PubMed ID: 39139722 [TBL] [Abstract][Full Text] [Related]
16. Phenomic selection in wheat breeding: identification and optimisation of factors influencing prediction accuracy and comparison to genomic selection. Robert P; Auzanneau J; Goudemand E; Oury FX; Rolland B; Heumez E; Bouchet S; Le Gouis J; Rincent R Theor Appl Genet; 2022 Mar; 135(3):895-914. PubMed ID: 34988629 [TBL] [Abstract][Full Text] [Related]
17. Increased Predictive Accuracy of Multi-Environment Genomic Prediction Model for Yield and Related Traits in Spring Wheat ( Tomar V; Singh D; Dhillon GS; Chung YS; Poland J; Singh RP; Joshi AK; Gautam Y; Tiwari BS; Kumar U Front Plant Sci; 2021; 12():720123. PubMed ID: 34691100 [TBL] [Abstract][Full Text] [Related]
18. Canopy Temperature and Vegetation Indices from High-Throughput Phenotyping Improve Accuracy of Pedigree and Genomic Selection for Grain Yield in Wheat. Rutkoski J; Poland J; Mondal S; Autrique E; Pérez LG; Crossa J; Reynolds M; Singh R G3 (Bethesda); 2016 Sep; 6(9):2799-808. PubMed ID: 27402362 [TBL] [Abstract][Full Text] [Related]
19. Predictions of heading date in bread wheat (Triticum aestivum L.) using QTL-based parameters of an ecophysiological model. Bogard M; Ravel C; Paux E; Bordes J; Balfourier F; Chapman SC; Le Gouis J; Allard V J Exp Bot; 2014 Nov; 65(20):5849-65. PubMed ID: 25148833 [TBL] [Abstract][Full Text] [Related]