These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 3263724)

  • 1. Ultrasound-enhanced diffusion through isolated frog skin.
    Mortimer AJ; Trollope BJ; Villeneuve EJ; Roy OZ
    Ultrasonics; 1988 Nov; 26(6):348-51. PubMed ID: 3263724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gas exchange in isolated perfused frog skin as a function of perfusion rate.
    Pinder AW; Clemens D; Feder ME
    Respir Physiol; 1991 Jul; 85(1):1-14. PubMed ID: 1947447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An isolated perfused frog skin preparation for the study of gas exchange.
    Pinder A; Clemens D; Feder M
    Adv Exp Med Biol; 1990; 277():719-24. PubMed ID: 2096674
    [No Abstract]   [Full Text] [Related]  

  • 4. Characterization of transdermal solute transport induced by low-frequency ultrasound in the hairless rat skin.
    Mutoh M; Ueda H; Nakamura Y; Hirayama K; Atobe M; Kobayashi D; Morimoto Y
    J Control Release; 2003 Sep; 92(1-2):137-46. PubMed ID: 14499192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of cadmium on active sodium transport by the abdominal skin and the isolated epidermis of the bullfrog: differences in effects between epidermal and dermal cadmium applications.
    Takada M; Hayashi H
    Jpn J Physiol; 1980; 30(2):257-69. PubMed ID: 6970287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Acoustic Reflection on the Inertial Cavitation Dose in a Franz Diffusion Cell.
    Robertson J; Becker S
    Ultrasound Med Biol; 2018 May; 44(5):1100-1109. PubMed ID: 29525456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lithium transport across isolated frog skin epithelium.
    Reinach PS; Candia OA; Siegel GJ
    J Membr Biol; 1975 Dec; 25(1-2):75-92. PubMed ID: 1082512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustic cavitation as an enhancing mechanism of low-frequency sonophoresis for transdermal drug delivery.
    Ueda H; Mutoh M; Seki T; Kobayashi D; Morimoto Y
    Biol Pharm Bull; 2009 May; 32(5):916-20. PubMed ID: 19420764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An investigation of the role of cavitation in low-frequency ultrasound-mediated transdermal drug transport.
    Tang H; Wang CC; Blankschtein D; Langer R
    Pharm Res; 2002 Aug; 19(8):1160-9. PubMed ID: 12240942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mechanistic study of ultrasonically-enhanced transdermal drug delivery.
    Mitragotri S; Edwards DA; Blankschtein D; Langer R
    J Pharm Sci; 1995 Jun; 84(6):697-706. PubMed ID: 7562407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of arginine vasotocin and vasopressin receptor antagonists on Na+ and Cl- transport in the isolated skin of two frog species, Hyla japonica and Rana nigromaculata.
    Yamada T; Nishio T; Sano Y; Kawago K; Matsuda K; Uchiyama M
    Gen Comp Endocrinol; 2008 May; 157(1):63-9. PubMed ID: 18448104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sodium transport and distribution of electrolytes in frog skin.
    Duncan RL; Watlington CO; Biber TU; Huf EG
    Physiol Chem Phys Med NMR; 1985; 17(2):155-72. PubMed ID: 3001793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of furosemide on unidirectional fluxes of sodium and chloride across the skin of the frog, Rana pipiens.
    Yorio T; Bentley PJ
    Biochim Biophys Acta; 1976 Dec; 455(3):831-6. PubMed ID: 1087163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glutaraldehyde inhibits the active transport of sodium and the oxygen consumption, while increasing the water diffusional permeability in frog skin.
    Mărgineanu DG; Rucăreanu C; Flonta ML; Finichiu D
    Arch Int Physiol Biochim; 1984 Nov; 92(4):305-12. PubMed ID: 6085249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energetics of sodium transport in frog skin. I. Oxygen consumption in the short-circuited state.
    Vieira FL; Caplan SR; Essig A
    J Gen Physiol; 1972 Jan; 59(1):60-76. PubMed ID: 4536630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of amiloride on chloride transport across amphibian epithelia.
    Kristensen P
    J Membr Biol; 1978; 40 Spec No():167-85. PubMed ID: 104038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasound-enhanced transdermal transport.
    Merino G; Kalia YN; Guy RH
    J Pharm Sci; 2003 Jun; 92(6):1125-37. PubMed ID: 12761802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleation and evolution of ultrasonic cavitation in a rotating exposure chamber.
    Miller DL; Williams AR
    J Ultrasound Med; 1992 Aug; 11(8):407-12. PubMed ID: 1495132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro study of low-frequency ultrasound-enhanced transdermal transport of fentanyl and caffeine across human and hairless rat skin.
    Boucaud A; Machet L; Arbeille B; Machet MC; Sournac M; Mavon A; Patat F; Vaillant L
    Int J Pharm; 2001 Oct; 228(1-2):69-77. PubMed ID: 11576769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Circulation Cooling in Continuous Skin Sonoporation at Constant Coupling Fluid Temperatures.
    Robertson J; Squire M; Becker S
    Ultrasound Med Biol; 2020 Jan; 46(1):137-148. PubMed ID: 31630889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.