BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 32637248)

  • 1. High-resolution, ultrafast, wide-field retinal eye-tracking for enhanced quantification of fixational and saccadic motion.
    Bartuzel MM; Wróbel K; Tamborski S; Meina M; Nowakowski M; Dalasiński K; Szkulmowska A; Szkulmowski M
    Biomed Opt Express; 2020 Jun; 11(6):3164-3180. PubMed ID: 32637248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microsaccades: Empirical Research and Methodological Advances - Introduction to Part 1 of the Thematic Special Issue.
    Martinez-Conde S; Engbert R; Groner R
    J Eye Mov Res; 2020 Jun; 12(6):. PubMed ID: 33828747
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Vienola KV; Damodaran M; Braaf B; Vermeer KA; de Boer JF
    Biomed Opt Express; 2018 Feb; 9(2):591-602. PubMed ID: 29552396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transfer function of the rhesus macaque oculomotor system for small-amplitude slow motion trajectories.
    Skinner J; Buonocore A; Hafed ZM
    J Neurophysiol; 2019 Feb; 121(2):513-529. PubMed ID: 30540500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of fixational eye position and microsaccades during spatial cueing: the case of express microsaccades.
    Tian X; Yoshida M; Hafed ZM
    J Neurophysiol; 2018 May; 119(5):1962-1980. PubMed ID: 29465321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binocular eye tracking with the Tracking Scanning Laser Ophthalmoscope.
    Stevenson SB; Sheehy CK; Roorda A
    Vision Res; 2016 Jan; 118():98-104. PubMed ID: 25676884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compact scanning laser ophthalmoscope with high-speed retinal tracker.
    Hammer DX; Ferguson RD; Magill JC; White MA; Elsner AE; Webb RH
    Appl Opt; 2003 Aug; 42(22):4621-32. PubMed ID: 12916631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous recordings of ocular microtremor and microsaccades with a piezoelectric sensor and a video-oculography system.
    McCamy MB; Collins N; Otero-Millan J; Al-Kalbani M; Macknik SL; Coakley D; Troncoso XG; Boyle G; Narayanan V; Wolf TR; Martinez-Conde S
    PeerJ; 2013; 1():e14. PubMed ID: 23638348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. De-warping of images and improved eye tracking for the scanning laser ophthalmoscope.
    Bedggood P; Metha A
    PLoS One; 2017; 12(4):e0174617. PubMed ID: 28369065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new comprehensive eye-tracking test battery concurrently evaluating the Pupil Labs glasses and the EyeLink 1000.
    Ehinger BV; Groß K; Ibs I; König P
    PeerJ; 2019; 7():e7086. PubMed ID: 31328028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging.
    Hammer DX; Ferguson RD; Bigelow CE; Iftimia NV; Ustun TE; Burns SA
    Opt Express; 2006 Apr; 14(8):3354-67. PubMed ID: 19516480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fixational eye movements in passive versus active sustained fixation tasks.
    Bowers NR; Gautier J; Lin S; Roorda A
    J Vis; 2021 Oct; 21(11):16. PubMed ID: 34677574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive response to ocular muscle weakness in human pursuit and saccadic eye movements.
    Optican LM; Zee DS; Chu FC
    J Neurophysiol; 1985 Jul; 54(1):110-22. PubMed ID: 4031979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-speed, image-based eye tracking with a scanning laser ophthalmoscope.
    Sheehy CK; Yang Q; Arathorn DW; Tiruveedhula P; de Boer JF; Roorda A
    Biomed Opt Express; 2012 Oct; 3(10):2611-22. PubMed ID: 23082300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Apparent motion produces multiple deficits in visually guided smooth pursuit eye movements of monkeys.
    Churchland MM; Lisberger SG
    J Neurophysiol; 2000 Jul; 84(1):216-35. PubMed ID: 10899198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strip-based digital image registration for distortion minimization and robust eye motion measurement from scanned ophthalmic imaging systems.
    Zhang M; Gofas-Salas E; Leonard BT; Rui Y; Snyder VC; Reecher HM; Mecê P; Rossi EA
    Biomed Opt Express; 2021 Apr; 12(4):2353-2372. PubMed ID: 33996234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of binocular fixational eye movements including cyclotorsion with split-field binocular scanning laser ophthalmoscopy.
    Hofmann J; Domdei L; Jainta S; Harmening WM
    J Vis; 2022 Sep; 22(10):5. PubMed ID: 36069941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterizing Fixational Eye Motion Variance Over Time as Recorded by the Tracking Scanning Laser Ophthalmoscope.
    Condor Montes SY; Bennett D; Bensinger E; Rani L; Sherkat Y; Zhao C; Helft Z; Roorda A; Green AJ; Sheehy CK
    Transl Vis Sci Technol; 2022 Feb; 11(2):35. PubMed ID: 35201339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An eye movement technique for correlating fixational target eye movements with location on the retinal image.
    Barrett SF; Zwick H
    Biomed Sci Instrum; 2000; 36():183-8. PubMed ID: 10834230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Is apparent fixational drift in eye-tracking data due to filters or eyeball rotation?
    Niehorster DC; Zemblys R; Holmqvist K
    Behav Res Methods; 2021 Feb; 53(1):311-324. PubMed ID: 32705655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.