These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 32637667)

  • 1. Improving the reaction mix of a
    Spice AJ; Aw R; Bracewell DG; Polizzi KM
    Synth Syst Biotechnol; 2020 Sep; 5(3):137-144. PubMed ID: 32637667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosensor-assisted engineering of a high-yield Pichia pastoris cell-free protein synthesis platform.
    Aw R; Polizzi KM
    Biotechnol Bioeng; 2019 Mar; 116(3):656-666. PubMed ID: 30552674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methods for Expression of Recombinant Proteins Using a Pichia pastoris Cell-Free System.
    Aw R; Spice AJ; Polizzi KM
    Curr Protoc Protein Sci; 2020 Dec; 102(1):e115. PubMed ID: 33108045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Establishing a Eukaryotic
    Zhang L; Liu WQ; Li J
    Front Bioeng Biotechnol; 2020; 8():536. PubMed ID: 32626695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. IRES-mediated Pichia pastoris cell-free protein synthesis.
    Wang Y; Wang T; Chen X; Lu Y
    Bioresour Bioprocess; 2023 Jun; 10(1):35. PubMed ID: 38647944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell-Free Protein Synthesis Using Pichia pastoris.
    Spice AJ; Aw R; Polizzi KM
    Methods Mol Biol; 2022; 2433():75-88. PubMed ID: 34985738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and Assembly of Hepatitis B Virus-Like Particles in a
    Spice AJ; Aw R; Bracewell DG; Polizzi KM
    Front Bioeng Biotechnol; 2020; 8():72. PubMed ID: 32117947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pichia pastoris secretes recombinant proteins less efficiently than Chinese hamster ovary cells but allows higher space-time yields for less complex proteins.
    Maccani A; Landes N; Stadlmayr G; Maresch D; Leitner C; Maurer M; Gasser B; Ernst W; Kunert R; Mattanovich D
    Biotechnol J; 2014 Apr; 9(4):526-37. PubMed ID: 24390926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning the Cell-Free Protein Synthesis System for Biomanufacturing of Monomeric Human Filaggrin.
    Kim J; Copeland CE; Seki K; Vögeli B; Kwon YC
    Front Bioeng Biotechnol; 2020; 8():590341. PubMed ID: 33195157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell-free protein expression based on extracts from CHO cells.
    Brödel AK; Sonnabend A; Kubick S
    Biotechnol Bioeng; 2014 Jan; 111(1):25-36. PubMed ID: 24018795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimized extract preparation methods and reaction conditions for improved yeast cell-free protein synthesis.
    Hodgman CE; Jewett MC
    Biotechnol Bioeng; 2013 Oct; 110(10):2643-54. PubMed ID: 23832321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Versatile Cell-Free Protein Synthesis Systems Based on Chinese Hamster Ovary Cells.
    Thoring L; Kubick S
    Methods Mol Biol; 2018; 1850():289-308. PubMed ID: 30242694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Easy Synthesis of Complex Biomolecular Assemblies: Wheat Germ Cell-Free Protein Expression in Structural Biology.
    Fogeron ML; Lecoq L; Cole L; Harbers M; Böckmann A
    Front Mol Biosci; 2021; 8():639587. PubMed ID: 33842544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Screening for functional IRESes using α-complementation system of β-galactosidase in
    Huang Y; Zhang Y; Li S; Lin T; Wu J; Lin Y
    Biotechnol Biofuels; 2019; 12():300. PubMed ID: 31890028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scaling eukaryotic cell-free protein synthesis achieved with the versatile and high-yielding tobacco BY-2 cell lysate.
    Gupta MD; Flaskamp Y; Roentgen R; Juergens H; Armero-Gimenez J; Albrecht F; Hemmerich J; Arfi ZA; Neuser J; Spiegel H; Schillberg S; Yeliseev A; Song L; Qiu J; Williams C; Finnern R
    Biotechnol Bioeng; 2023 Oct; 120(10):2890-2906. PubMed ID: 37376851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell-free protein synthesis using Chinese hamster ovary cells.
    Makrydaki E; Marshall O; Heide C; Buldum G; Kontoravdi C; Polizzi KM
    Methods Enzymol; 2021; 659():411-435. PubMed ID: 34752298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative analysis of eukaryotic cell-free expression systems.
    Hartsough EM; Shah P; Larsen AC; Chaput JC
    Biotechniques; 2015 Sep; 59(3):149-51. PubMed ID: 26345507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Key reaction components affect the kinetics and performance robustness of cell-free protein synthesis reactions.
    Banks AM; Whitfield CJ; Brown SR; Fulton DA; Goodchild SA; Grant C; Love J; Lendrem DW; Fieldsend JE; Howard TP
    Comput Struct Biotechnol J; 2022; 20():218-229. PubMed ID: 35024094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comprehensive structural annotation of Pichia pastoris transcriptome and the response to various carbon sources using deep paired-end RNA sequencing.
    Liang S; Wang B; Pan L; Ye Y; He M; Han S; Zheng S; Wang X; Lin Y
    BMC Genomics; 2012 Dec; 13():738. PubMed ID: 23276294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Cost-Effective
    Schloßhauer JL; Dondapati SK; Kubick S; Zemella A
    Bioengineering (Basel); 2024 Jan; 11(1):. PubMed ID: 38247969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.