These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1994 related articles for article (PubMed ID: 32638018)
1. Single-cell analysis of SARS-CoV-2 receptor ACE2 and spike protein priming expression of proteases in the human heart. Liu H; Gai S; Wang X; Zeng J; Sun C; Zhao Y; Zheng Z Cardiovasc Res; 2020 Aug; 116(10):1733-1741. PubMed ID: 32638018 [TBL] [Abstract][Full Text] [Related]
2. SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19. Zhang S; Liu Y; Wang X; Yang L; Li H; Wang Y; Liu M; Zhao X; Xie Y; Yang Y; Zhang S; Fan Z; Dong J; Yuan Z; Ding Z; Zhang Y; Hu L J Hematol Oncol; 2020 Sep; 13(1):120. PubMed ID: 32887634 [TBL] [Abstract][Full Text] [Related]
3. SARS-CoV-2 pandemic and research gaps: Understanding SARS-CoV-2 interaction with the ACE2 receptor and implications for therapy. Datta PK; Liu F; Fischer T; Rappaport J; Qin X Theranostics; 2020; 10(16):7448-7464. PubMed ID: 32642005 [TBL] [Abstract][Full Text] [Related]
4. Existence of SARS-CoV-2 Entry Molecules in the Oral Cavity. Sakaguchi W; Kubota N; Shimizu T; Saruta J; Fuchida S; Kawata A; Yamamoto Y; Sugimoto M; Yakeishi M; Tsukinoki K Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32825469 [TBL] [Abstract][Full Text] [Related]
5. Comparison of Severe Acute Respiratory Syndrome Coronavirus 2 Spike Protein Binding to ACE2 Receptors from Human, Pets, Farm Animals, and Putative Intermediate Hosts. Zhai X; Sun J; Yan Z; Zhang J; Zhao J; Zhao Z; Gao Q; He WT; Veit M; Su S J Virol; 2020 Jul; 94(15):. PubMed ID: 32404529 [TBL] [Abstract][Full Text] [Related]
6. Broad and Differential Animal Angiotensin-Converting Enzyme 2 Receptor Usage by SARS-CoV-2. Zhao X; Chen D; Szabla R; Zheng M; Li G; Du P; Zheng S; Li X; Song C; Li R; Guo JT; Junop M; Zeng H; Lin H J Virol; 2020 Aug; 94(18):. PubMed ID: 32661139 [TBL] [Abstract][Full Text] [Related]
7. SARS-CoV-2 strategically mimics proteolytic activation of human ENaC. Anand P; Puranik A; Aravamudan M; Venkatakrishnan AJ; Soundararajan V Elife; 2020 May; 9():. PubMed ID: 32452762 [TBL] [Abstract][Full Text] [Related]
8. Gene expression and Aguiar JA; Tremblay BJ; Mansfield MJ; Woody O; Lobb B; Banerjee A; Chandiramohan A; Tiessen N; Cao Q; Dvorkin-Gheva A; Revill S; Miller MS; Carlsten C; Organ L; Joseph C; John A; Hanson P; Austin RC; McManus BM; Jenkins G; Mossman K; Ask K; Doxey AC; Hirota JA Eur Respir J; 2020 Sep; 56(3):. PubMed ID: 32675206 [TBL] [Abstract][Full Text] [Related]
9. Scaffold morphing of arbidol (umifenovir) in search of multi-targeting therapy halting the interaction of SARS-CoV-2 with ACE2 and other proteases involved in COVID-19. Choudhary S; Silakari O Virus Res; 2020 Nov; 289():198146. PubMed ID: 32866534 [TBL] [Abstract][Full Text] [Related]
10. Interaction of SARS-CoV-2 and Other Coronavirus With ACE (Angiotensin-Converting Enzyme)-2 as Their Main Receptor: Therapeutic Implications. Davidson AM; Wysocki J; Batlle D Hypertension; 2020 Nov; 76(5):1339-1349. PubMed ID: 32851855 [TBL] [Abstract][Full Text] [Related]
11. Optimized Pseudotyping Conditions for the SARS-COV-2 Spike Glycoprotein. Johnson MC; Lyddon TD; Suarez R; Salcedo B; LePique M; Graham M; Ricana C; Robinson C; Ritter DG J Virol; 2020 Oct; 94(21):. PubMed ID: 32788194 [TBL] [Abstract][Full Text] [Related]
12. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Chen L; Li X; Chen M; Feng Y; Xiong C Cardiovasc Res; 2020 May; 116(6):1097-1100. PubMed ID: 32227090 [TBL] [Abstract][Full Text] [Related]
13. Comprehensive analysis of two potential novel SARS-CoV-2 entries, TMPRSS2 and IFITM3, in healthy individuals and cancer patients. Dai YJ; Zhang WN; Wang WD; He SY; Liang CC; Wang DW Int J Biol Sci; 2020; 16(15):3028-3036. PubMed ID: 33061814 [TBL] [Abstract][Full Text] [Related]
14. Computational Alanine Scanning and Structural Analysis of the SARS-CoV-2 Spike Protein/Angiotensin-Converting Enzyme 2 Complex. Laurini E; Marson D; Aulic S; Fermeglia M; Pricl S ACS Nano; 2020 Sep; 14(9):11821-11830. PubMed ID: 32833435 [TBL] [Abstract][Full Text] [Related]
15. Structural and functional modelling of SARS-CoV-2 entry in animal models. Brooke GN; Prischi F Sci Rep; 2020 Sep; 10(1):15917. PubMed ID: 32985513 [TBL] [Abstract][Full Text] [Related]
16. Organ-protective effect of angiotensin-converting enzyme 2 and its effect on the prognosis of COVID-19. Cheng H; Wang Y; Wang GQ J Med Virol; 2020 Jul; 92(7):726-730. PubMed ID: 32221983 [TBL] [Abstract][Full Text] [Related]
18. Expression profiling meta-analysis of ACE2 and TMPRSS2, the putative anti-inflammatory receptor and priming protease of SARS-CoV-2 in human cells, and identification of putative modulators. Gkogkou E; Barnasas G; Vougas K; Trougakos IP Redox Biol; 2020 Sep; 36():101615. PubMed ID: 32863223 [TBL] [Abstract][Full Text] [Related]
19. Spike protein recognition of mammalian ACE2 predicts the host range and an optimized ACE2 for SARS-CoV-2 infection. Luan J; Lu Y; Jin X; Zhang L Biochem Biophys Res Commun; 2020 May; 526(1):165-169. PubMed ID: 32201080 [TBL] [Abstract][Full Text] [Related]
20. The Anticoagulant Nafamostat Potently Inhibits SARS-CoV-2 S Protein-Mediated Fusion in a Cell Fusion Assay System and Viral Infection In Vitro in a Cell-Type-Dependent Manner. Yamamoto M; Kiso M; Sakai-Tagawa Y; Iwatsuki-Horimoto K; Imai M; Takeda M; Kinoshita N; Ohmagari N; Gohda J; Semba K; Matsuda Z; Kawaguchi Y; Kawaoka Y; Inoue JI Viruses; 2020 Jun; 12(6):. PubMed ID: 32532094 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]