These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 32638299)
1. A wetland plant, Phalaris arundinacea, accumulates nitrogen and phosphorus during senescence. Huang X; Lei S; Wang G; Zeng B Environ Sci Pollut Res Int; 2020 Nov; 27(31):38928-38936. PubMed ID: 32638299 [TBL] [Abstract][Full Text] [Related]
2. Greater seasonal carbon gain across a broad temperature range contributes to the invasive potential of Phalaris arundinacea (Poaceae; reed canary grass) over the native sedge Carex stricta (Cyperaceae). He Z; Bentley LP; Holaday AS Am J Bot; 2011 Jan; 98(1):20-30. PubMed ID: 21613081 [TBL] [Abstract][Full Text] [Related]
3. Substance accumulation of a wetland plant, Yang X; Wang G; Lei S; Li Z; Zeng B Front Plant Sci; 2022; 13():996587. PubMed ID: 36311123 [No Abstract] [Full Text] [Related]
4. Plasticity of nitrogen allocation in the leaves of the invasive wetland grass, Phalaris arundinacea and co-occurring Carex species determines the photosynthetic sensitivity to nitrogen availability. Holaday AS; Schwilk DW; Waring EF; Guvvala H; Griffin CM; Lewis OM J Plant Physiol; 2015 Apr; 177():20-29. PubMed ID: 25659333 [TBL] [Abstract][Full Text] [Related]
5. Concentration is not enough to evaluate accumulation of heavy metals and nutrients in plants. Vymazal J Sci Total Environ; 2016 Feb; 544():495-8. PubMed ID: 26673940 [TBL] [Abstract][Full Text] [Related]
6. How nitrogen and sulphur addition, and a single drought event affect root phosphatase activity in Phalaris arundinacea. Robroek BJ; Adema EB; Venterink HO; Leonardson L; Wassen MJ Sci Total Environ; 2009 Mar; 407(7):2342-8. PubMed ID: 19101022 [TBL] [Abstract][Full Text] [Related]
7. Foliar nitrogen and phosphorus stoichiometry of three wetland plants distributed along an elevation gradient in Dongting Lake, China. Li F; Gao H; Zhu L; Xie Y; Yang G; Hu C; Chen X; Deng Z Sci Rep; 2017 Jun; 7(1):2820. PubMed ID: 28588236 [TBL] [Abstract][Full Text] [Related]
8. Chloride removal capacity and salinity tolerance in wetland plants. Schück M; Greger M J Environ Manage; 2022 Apr; 308():114553. PubMed ID: 35121460 [TBL] [Abstract][Full Text] [Related]
9. Accumulation and distribution of macroelements in the organs of Phalaris arundinacea L.: Implication for phytoremediation. Polechońska L; Klink A J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(12):1385-91. PubMed ID: 25072770 [TBL] [Abstract][Full Text] [Related]
10. Trace metals in Phragmites australis and Phalaris arundinacea growing in constructed and natural wetlands. Vymazal J; Svehla J; Kröpfelová L; Chrastný V Sci Total Environ; 2007 Jul; 380(1-3):154-62. PubMed ID: 17307232 [TBL] [Abstract][Full Text] [Related]
11. Contaminant removal from low-concentration polluted river water by the bio-rack wetlands. Wang J; Zhang L; Lu S; Jin X; Gan S J Environ Sci (China); 2012; 24(6):1006-13. PubMed ID: 23505867 [TBL] [Abstract][Full Text] [Related]
12. The combined effects of sediment accretion (burial) and nutrient enrichment on the growth and propagation of Phalaris arundinacea. Chen X; Liao Y; Xie Y; Wu C; Li F; Deng Z; Li X Sci Rep; 2017 Jan; 7():39963. PubMed ID: 28054590 [TBL] [Abstract][Full Text] [Related]
13. Water use efficiency and shoot biomass production under water limitation is negatively correlated to the discrimination against Mårtensson LM; Carlsson G; Prade T; Kørup K; Lærke PE; Jensen ES Plant Physiol Biochem; 2017 Apr; 113():1-5. PubMed ID: 28152389 [TBL] [Abstract][Full Text] [Related]
14. [Dynamics of carbon, nitrogen and phosphorus storage of three dominant marsh plants in Hangzhou Bay coastal wetland]. Shao XX; Li WH; Wu M; Yang WY; Jiang KY; Ye XQ Huan Jing Ke Xue; 2013 Sep; 34(9):3451-7. PubMed ID: 24288989 [TBL] [Abstract][Full Text] [Related]
15. Arbuscular mycorrhizal fungi colonization and physiological functions toward wetland plants under different water regimes. Hu S; Chen Z; Vosátka M; Vymazal J Sci Total Environ; 2020 May; 716():137040. PubMed ID: 32044486 [TBL] [Abstract][Full Text] [Related]
16. Physiological and transcriptional responses of Phalaris arundinacea under waterlogging conditions. Wang X; He Y; Zhang C; Tian YA; Lei X; Li D; Bai S; Deng X; Lin H J Plant Physiol; 2021 Jun; 261():153428. PubMed ID: 33957505 [TBL] [Abstract][Full Text] [Related]
17. Variation in sequences containing microsatellite motifs in the perennial biomass and forage grass, Phalaris arundinacea (Poaceae). Barth S; Jankowska MJ; Hodkinson TR; Vellani T; Klaas M BMC Res Notes; 2016 Mar; 9():184. PubMed ID: 27005474 [TBL] [Abstract][Full Text] [Related]
18. Negative per capita effects of two invasive plants, Lythrum salicaria and Phalaris arundinacea, on the moth diversity of wetland communities. Schooler SS; McEvoy PB; Hammond P; Coombs EM Bull Entomol Res; 2009 Jun; 99(3):229-43. PubMed ID: 18947450 [TBL] [Abstract][Full Text] [Related]
19. Two-stage constructed wetland systems for polluted surface water treatment. Saeed T; Majed N; Khan T; Mallika H J Environ Manage; 2019 Nov; 249():109379. PubMed ID: 31421477 [TBL] [Abstract][Full Text] [Related]
20. A test of four plant species to reduce total nitrogen and total phosphorus from soil leachate in subsurface wetland microcosms. Fraser LH; Carty SM; Steer D Bioresour Technol; 2004 Sep; 94(2):185-92. PubMed ID: 15158511 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]