BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 32638708)

  • 1. Biomimetic nonbiofouling polypyrrole electrodes grafted with zwitterionic polymer using gamma rays.
    Jeong JO; Kim S; Park J; Lee S; Park JS; Lim YM; Lee JY
    J Mater Chem B; 2020 Aug; 8(32):7225-7232. PubMed ID: 32638708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Versatile biomimetic conductive polypyrrole films doped with hyaluronic acid of different molecular weights.
    Kim S; Jang Y; Jang M; Lim A; Hardy JG; Park HS; Lee JY
    Acta Biomater; 2018 Oct; 80():258-268. PubMed ID: 30266636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomimetic phosphorylcholine polymer grafting from polydimethylsiloxane surface using photo-induced polymerization.
    Goda T; Konno T; Takai M; Moro T; Ishihara K
    Biomaterials; 2006 Oct; 27(30):5151-60. PubMed ID: 16797692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of anti-biofouling interface on hydroxyapatite surface by coating zwitterionic MPC polymer containing calcium-binding moieties to prevent oral bacterial adhesion.
    Kang S; Lee M; Kang M; Noh M; Jeon J; Lee Y; Seo JH
    Acta Biomater; 2016 Aug; 40():70-77. PubMed ID: 26961806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mussel-Inspired Polymer-Based Coating Technology for Antifouling and Antibacterial Properties.
    Imbia AS; Ounkaew A; Mao X; Zeng H; Liu Y; Narain R
    Langmuir; 2024 May; 40(21):10957-10965. PubMed ID: 38752656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid Mussel-Inspired Surface Zwitteration for Enhanced Antifouling and Antibacterial Properties.
    Asha AB; Chen Y; Zhang H; Ghaemi S; Ishihara K; Liu Y; Narain R
    Langmuir; 2019 Feb; 35(5):1621-1630. PubMed ID: 30558423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carboxy-endcapped conductive polypyrrole: biomimetic conducting polymer for cell scaffolds and electrodes.
    Lee JW; Serna F; Schmidt CE
    Langmuir; 2006 Nov; 22(24):9816-9. PubMed ID: 17106966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methacrylate polymer layers bearing poly(ethylene oxide) and phosphorylcholine side chains as non-fouling surfaces: in vitro interactions with plasma proteins and platelets.
    Feng W; Gao X; McClung G; Zhu S; Ishihara K; Brash JL
    Acta Biomater; 2011 Oct; 7(10):3692-9. PubMed ID: 21693202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anti-biofouling and functionalizable bioinspired chitosan-based hydrogel coating via surface photo-immobilization.
    Xv J; Li H; Zhang W; Lai G; Xue H; Zhao J; Tu M; Zeng R
    J Biomater Sci Polym Ed; 2019 Apr; 30(5):398-414. PubMed ID: 30688155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antifouling and Antibacterial Polymer-Coated Surfaces Based on the Combined Effect of Zwitterions and the Natural Borneol.
    Cheng Q; Asha AB; Liu Y; Peng YY; Diaz-Dussan D; Shi Z; Cui Z; Narain R
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):9006-9014. PubMed ID: 33576614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zwitterionic polymer brushes via dopamine-initiated ATRP from PET sheets for improving hemocompatible and antifouling properties.
    Jin X; Yuan J; Shen J
    Colloids Surf B Biointerfaces; 2016 Sep; 145():275-284. PubMed ID: 27208441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell-Membrane-Inspired Silicone Interfaces that Mitigate Proinflammatory Macrophage Activation and Bacterial Adhesion.
    Qin XH; Senturk B; Valentin J; Malheiro V; Fortunato G; Ren Q; Rottmar M; Maniura-Weber K
    Langmuir; 2019 Feb; 35(5):1882-1894. PubMed ID: 30153734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of nonfouling, bactericidal, and bacteria corpse release multifunctional surface through surface-initiated RAFT polymerization.
    Wang B; Ye Z; Tang Y; Han Y; Lin Q; Liu H; Chen H; Nan K
    Int J Nanomedicine; 2017; 12():111-125. PubMed ID: 28053527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mild method for surface-grafting MPC onto poly(ester-urethane) based on aliphatic diurethane diisocyanate with high grafting efficiency.
    Liu X; Yang B; Hou Z; Zhang N; Gao Y
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109952. PubMed ID: 31499985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduced platelets and bacteria adhesion on poly(ether ether ketone) by photoinduced and self-initiated graft polymerization of 2-methacryloyloxyethyl phosphorylcholine.
    Tateishi T; Kyomoto M; Kakinoki S; Yamaoka T; Ishihara K
    J Biomed Mater Res A; 2014 May; 102(5):1342-9. PubMed ID: 23720384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antifouling silicone hydrogel contact lenses via densely grafted phosphorylcholine polymers.
    Spadafora A; Korogiannaki M; Sheardown H
    Biointerphases; 2020 Aug; 15(4):041013. PubMed ID: 32867505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implantable polypyrrole bioelectrodes inducing anti-inflammatory macrophage polarization for long-term in vivo signal recording.
    Lee S; Park S; Park J; Lee JY
    Acta Biomater; 2023 Sep; 168():458-469. PubMed ID: 37414115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoinduced graft polymerization of 2-methacryloyloxyethyl phosphorylcholine on silicone hydrogels for reducing protein adsorption.
    Wang JJ; Liu F
    J Mater Sci Mater Med; 2011 Dec; 22(12):2651-7. PubMed ID: 22020548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomimetic polypyrrole/hyaluronic acid electrodes integrated with hyaluronidase inhibitors offer persistent electroactivity and resistance to cell binding.
    Yi J; Lee S; Lee JY
    J Mater Chem B; 2022 Mar; 10(10):1591-1600. PubMed ID: 35166764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Copolymers of 2-methacryloyloxyethyl phosphorylcholine (MPC) as biomaterials.
    Nakabayashi N; Iwasaki Y
    Biomed Mater Eng; 2004; 14(4):345-54. PubMed ID: 15472384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.