These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 32638750)

  • 1. Influence of surface hydrophilicity and hydration on the rotational relaxation of supercooled water on graphene oxide surfaces.
    M R; Ayappa KG
    Phys Chem Chem Phys; 2020 Jul; 22(28):16080-16095. PubMed ID: 32638750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamical Transitions of Supercooled Water in Graphene Oxide Nanopores: Influence of Surface Hydrophilicity.
    M R; Ayappa KG
    J Phys Chem B; 2020 Jun; 124(23):4805-4820. PubMed ID: 32401517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of the extent of hydrophobicity on water organization and dynamics on 2D graphene oxide surfaces.
    M R; Ayappa KG
    Phys Chem Chem Phys; 2022 Jun; 24(24):14909-14923. PubMed ID: 35674363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamical Manifestations of Supercooling in Amyloid Hydration.
    Roy P; Menon S; Sengupta N
    J Phys Chem B; 2022 Jan; 126(1):44-53. PubMed ID: 34941279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing the Dynamics of Water Confined between Graphene Oxide Surfaces with Janus Interfaces: A Molecular Dynamics Study.
    M R; Ayappa KG
    J Phys Chem B; 2019 Apr; 123(13):2978-2993. PubMed ID: 30860840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The interplay between dynamic heterogeneities and structure of bulk liquid water: A molecular dynamics simulation study.
    Demontis P; Gulín-González J; Masia M; Sant M; Suffritti GB
    J Chem Phys; 2015 Jun; 142(24):244507. PubMed ID: 26133441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of deeply supercooled interfacial water.
    Swenson J; Cerveny S
    J Phys Condens Matter; 2015 Jan; 27(3):033102. PubMed ID: 25437331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mode coupling theory and fragile to strong transition in supercooled TIP4P/2005 water.
    De Marzio M; Camisasca G; Rovere M; Gallo P
    J Chem Phys; 2016 Feb; 144(7):074503. PubMed ID: 26896991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Confined Water: Structure, Dynamics, and Thermodynamics.
    Chakraborty S; Kumar H; Dasgupta C; Maiti PK
    Acc Chem Res; 2017 Sep; 50(9):2139-2146. PubMed ID: 28809537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rotational dynamics in supercooled water from nuclear spin relaxation and molecular simulations.
    Qvist J; Mattea C; Sunde EP; Halle B
    J Chem Phys; 2012 May; 136(20):204505. PubMed ID: 22667569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of surface polarity on the structure and dynamics of water in nanoscale confinement.
    Romero-Vargas Castrillón S; Giovambattista N; Aksay IA; Debenedetti PG
    J Phys Chem B; 2009 Feb; 113(5):1438-46. PubMed ID: 19143545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and dynamics of supercooled water in the hydration layer of poly(ethylene glycol).
    Li Y; Han Z; Ma C; Hong L; Ding Y; Chen Y; Zhao J; Liu D; Sun G; Zuo T; Cheng H; Han CC
    Struct Dyn; 2022 Sep; 9(5):054901. PubMed ID: 36090796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time scales of water dynamics at biological interfaces: peptides, proteins and cells.
    Qvist J; Persson E; Mattea C; Halle B
    Faraday Discuss; 2009; 141():131-44; discussion 175-207. PubMed ID: 19227355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitivity of water dynamics to biologically significant surfaces of monomeric insulin: role of topology and electrostatic interactions.
    Bagchi K; Roy S
    J Phys Chem B; 2014 Apr; 118(14):3805-13. PubMed ID: 24641444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics at the protein-water interface from 17O spin relaxation in deeply supercooled solutions.
    Mattea C; Qvist J; Halle B
    Biophys J; 2008 Sep; 95(6):2951-63. PubMed ID: 18586840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast increase of nanofluidic slip in supercooled water: the key role of dynamics.
    Herrero C; Tocci G; Merabia S; Joly L
    Nanoscale; 2020 Oct; 12(39):20396-20403. PubMed ID: 33021296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gradient of Segmental Dynamics in Stereoregular Poly(Methyl Methacrylate) Melts Confined between Pristine or Oxidized Graphene Sheets.
    Foroozani Behbahani A; Harmandaris V
    Polymers (Basel); 2021 Mar; 13(5):. PubMed ID: 33800419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of supercooled water in confined geometry.
    Bergman R; Swenson J
    Nature; 2000 Jan; 403(6767):283-6. PubMed ID: 10659841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ab initio and classical molecular dynamics studies of the structural and dynamical behavior of water near a hydrophobic graphene sheet.
    Rana MK; Chandra A
    J Chem Phys; 2013 May; 138(20):204702. PubMed ID: 23742495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of hydration water in supercooled water-trehalose solutions: The role of the hydrogen bonds network.
    Iorio A; Camisasca G; Rovere M; Gallo P
    J Chem Phys; 2019 Jul; 151(4):044507. PubMed ID: 31370561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.