These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 32638868)
21. Building Next-Generation Li-ion Capacitors with High Energy: An Approach beyond Intercalation. Aravindan V; Lee YS J Phys Chem Lett; 2018 Jul; 9(14):3946-3958. PubMed ID: 29975535 [TBL] [Abstract][Full Text] [Related]
22. Rechargeable Mg Hu X; Peng J; Xu F; Ding M ACS Appl Mater Interfaces; 2021 Dec; 13(48):57252-57263. PubMed ID: 34844407 [TBL] [Abstract][Full Text] [Related]
23. MXene as a Charge Storage Host. Okubo M; Sugahara A; Kajiyama S; Yamada A Acc Chem Res; 2018 Mar; 51(3):591-599. PubMed ID: 29469564 [TBL] [Abstract][Full Text] [Related]
24. Electrolyte Additives for Lithium Metal Anodes and Rechargeable Lithium Metal Batteries: Progress and Perspectives. Zhang H; Eshetu GG; Judez X; Li C; Rodriguez-Martínez LM; Armand M Angew Chem Int Ed Engl; 2018 Nov; 57(46):15002-15027. PubMed ID: 29442418 [TBL] [Abstract][Full Text] [Related]
25. Promising Cell Configuration for Next-Generation Energy Storage: Li2S/Graphite Battery Enabled by a Solvate Ionic Liquid Electrolyte. Li Z; Zhang S; Terada S; Ma X; Ikeda K; Kamei Y; Zhang C; Dokko K; Watanabe M ACS Appl Mater Interfaces; 2016 Jun; 8(25):16053-62. PubMed ID: 27282172 [TBL] [Abstract][Full Text] [Related]
26. Electrode materials with tailored facets for electrochemical energy storage. Wang F; Wang X; Chang Z; Zhu Y; Fu L; Liu X; Wu Y Nanoscale Horiz; 2016 Jul; 1(4):272-289. PubMed ID: 32260647 [TBL] [Abstract][Full Text] [Related]
27. Comparison of reduction products from graphite oxide and graphene oxide for anode applications in lithium-ion batteries and sodium-ion batteries. Sun Y; Tang J; Zhang K; Yuan J; Li J; Zhu DM; Ozawa K; Qin LC Nanoscale; 2017 Feb; 9(7):2585-2595. PubMed ID: 28150823 [TBL] [Abstract][Full Text] [Related]
28. Oxygen electrocatalysts in metal-air batteries: from aqueous to nonaqueous electrolytes. Wang ZL; Xu D; Xu JJ; Zhang XB Chem Soc Rev; 2014 Nov; 43(22):7746-86. PubMed ID: 24056780 [TBL] [Abstract][Full Text] [Related]
29. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes. Yu X; Manthiram A Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389 [TBL] [Abstract][Full Text] [Related]
30. Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Wu HB; Chen JS; Hng HH; Lou XW Nanoscale; 2012 Apr; 4(8):2526-42. PubMed ID: 22460594 [TBL] [Abstract][Full Text] [Related]
31. Organosulfides: An Emerging Class of Cathode Materials for Rechargeable Lithium Batteries. Wang DY; Guo W; Fu Y Acc Chem Res; 2019 Aug; 52(8):2290-2300. PubMed ID: 31386341 [TBL] [Abstract][Full Text] [Related]
32. Review on organosulfur materials for rechargeable lithium batteries. Shadike Z; Tan S; Wang QC; Lin R; Hu E; Qu D; Yang XQ Mater Horiz; 2021 Feb; 8(2):471-500. PubMed ID: 34821265 [TBL] [Abstract][Full Text] [Related]
33. Dendrites in Lithium Metal Anodes: Suppression, Regulation, and Elimination. Zhang X; Wang A; Liu X; Luo J Acc Chem Res; 2019 Nov; 52(11):3223-3232. PubMed ID: 31657541 [TBL] [Abstract][Full Text] [Related]
35. Silicon and Iron as Resource-Efficient Anode Materials for Ambient-Temperature Metal-Air Batteries: A Review. Weinrich H; Durmus YE; Tempel H; Kungl H; Eichel RA Materials (Basel); 2019 Jul; 12(13):. PubMed ID: 31269782 [TBL] [Abstract][Full Text] [Related]
36. Direct synthesis of lithium-intercalated graphene for electrochemical energy storage application. Kumar A; Reddy AL; Mukherjee A; Dubey M; Zhan X; Singh N; Ci L; Billups WE; Nagurny J; Mital G; Ajayan PM ACS Nano; 2011 Jun; 5(6):4345-9. PubMed ID: 21609023 [TBL] [Abstract][Full Text] [Related]
37. Electrolyte Regulation towards Stable Lithium-Metal Anodes in Lithium-Sulfur Batteries with Sulfurized Polyacrylonitrile Cathodes. Chen WJ; Li BQ; Zhao CX; Zhao M; Yuan TQ; Sun RC; Huang JQ; Zhang Q Angew Chem Int Ed Engl; 2020 Jun; 59(27):10732-10745. PubMed ID: 31746521 [TBL] [Abstract][Full Text] [Related]
38. The Aluminum-Ion Battery: A Sustainable and Seminal Concept? Leisegang T; Meutzner F; Zschornak M; Münchgesang W; Schmid R; Nestler T; Eremin RA; Kabanov AA; Blatov VA; Meyer DC Front Chem; 2019; 7():268. PubMed ID: 31119122 [TBL] [Abstract][Full Text] [Related]
39. Recent advances in cathode materials for rechargeable lithium-sulfur batteries. Li F; Liu Q; Hu J; Feng Y; He P; Ma J Nanoscale; 2019 Sep; 11(33):15418-15439. PubMed ID: 31408082 [TBL] [Abstract][Full Text] [Related]
40. Advances in the Cathode Materials for Lithium Rechargeable Batteries. Lee W; Muhammad S; Sergey C; Lee H; Yoon J; Kang YM; Yoon WS Angew Chem Int Ed Engl; 2020 Feb; 59(7):2578-2605. PubMed ID: 31034134 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]