BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 32639003)

  • 1. The mechanistic GEMMs of oncogenic histones.
    Lindroth AM; Park YJ; Matía V; Squatrito M
    Hum Mol Genet; 2020 Oct; 29(R2):R226-R235. PubMed ID: 32639003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The dark side of histones: genomic organization and role of oncohistones in cancer.
    Amatori S; Tavolaro S; Gambardella S; Fanelli M
    Clin Epigenetics; 2021 Apr; 13(1):71. PubMed ID: 33827674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The expanding landscape of 'oncohistone' mutations in human cancers.
    Nacev BA; Feng L; Bagert JD; Lemiesz AE; Gao J; Soshnev AA; Kundra R; Schultz N; Muir TW; Allis CD
    Nature; 2019 Mar; 567(7749):473-478. PubMed ID: 30894748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oncohistones: drivers of pediatric cancers.
    Mohammad F; Helin K
    Genes Dev; 2017 Dec; 31(23-24):2313-2324. PubMed ID: 29352018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Histone mutations in cancer.
    Espinoza Pereira KN; Shan J; Licht JD; Bennett RL
    Biochem Soc Trans; 2023 Oct; 51(5):1749-1763. PubMed ID: 37721138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Histone lysine methyltransferases in biology and disease.
    Husmann D; Gozani O
    Nat Struct Mol Biol; 2019 Oct; 26(10):880-889. PubMed ID: 31582846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A brief histone in time: understanding the combinatorial functions of histone PTMs in the nucleosome context.
    Ng MK; Cheung P
    Biochem Cell Biol; 2016 Feb; 94(1):33-42. PubMed ID: 26197985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Somatic Cancer Mutations in the SUV420H1 Protein Lysine Methyltransferase Modulate Its Catalytic Activity.
    Bröhm A; Elsawy H; Rathert P; Kudithipudi S; Schoch T; Schuhmacher MK; Weirich S; Jeltsch A
    J Mol Biol; 2019 Aug; 431(17):3068-3080. PubMed ID: 31255706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Histone Lysine-to-Methionine Mutations Reduce Histone Methylation and Cause Developmental Pleiotropy.
    Sanders D; Qian S; Fieweger R; Lu L; Dowell JA; Denu JM; Zhong X
    Plant Physiol; 2017 Apr; 173(4):2243-2252. PubMed ID: 28202597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensive structural analysis of mutant nucleosomes containing lysine to glutamine (KQ) substitutions in the H3 and H4 histone-fold domains.
    Iwasaki W; Tachiwana H; Kawaguchi K; Shibata T; Kagawa W; Kurumizaka H
    Biochemistry; 2011 Sep; 50(36):7822-32. PubMed ID: 21812398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comprehensive view of the epigenetic landscape. Part II: Histone post-translational modification, nucleosome level, and chromatin regulation by ncRNAs.
    Sadakierska-Chudy A; Filip M
    Neurotox Res; 2015 Feb; 27(2):172-97. PubMed ID: 25516120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histone Mutations and Bone Cancers.
    Taylor EL; Westendorf JJ
    Adv Exp Med Biol; 2021; 1283():53-62. PubMed ID: 33155137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interplay between different epigenetic modifications and mechanisms.
    Murr R
    Adv Genet; 2010; 70():101-41. PubMed ID: 20920747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulations of SIN mutations and histone variants in human nucleosomes reveal altered protein-DNA and core histone interactions.
    Vijayalakshmi M; Shivashankar GV; Sowdhamini R
    J Biomol Struct Dyn; 2007 Dec; 25(3):207-18. PubMed ID: 17937483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Mutation in Histone H2B Represents a New Class of Oncogenic Driver.
    Bennett RL; Bele A; Small EC; Will CM; Nabet B; Oyer JA; Huang X; Ghosh RP; Grzybowski AT; Yu T; Zhang Q; Riva A; Lele TP; Schatz GC; Kelleher NL; Ruthenburg AJ; Liphardt J; Licht JD
    Cancer Discov; 2019 Oct; 9(10):1438-1451. PubMed ID: 31337617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deciphering principles of nucleosome interactions and impact of cancer-associated mutations from comprehensive interaction network analysis.
    Xu W; Zhang H; Guo W; Jiang L; Zhao Y; Peng Y
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38329268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cancer-associated mutations of histones H2B, H3.1 and H2A.Z.1 affect the structure and stability of the nucleosome.
    Arimura Y; Ikura M; Fujita R; Noda M; Kobayashi W; Horikoshi N; Sun J; Shi L; Kusakabe M; Harata M; Ohkawa Y; Tashiro S; Kimura H; Ikura T; Kurumizaka H
    Nucleic Acids Res; 2018 Nov; 46(19):10007-10018. PubMed ID: 30053102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Histone H3K36 mutations promote sarcomagenesis through altered histone methylation landscape.
    Lu C; Jain SU; Hoelper D; Bechet D; Molden RC; Ran L; Murphy D; Venneti S; Hameed M; Pawel BR; Wunder JS; Dickson BC; Lundgren SM; Jani KS; De Jay N; Papillon-Cavanagh S; Andrulis IL; Sawyer SL; Grynspan D; Turcotte RE; Nadaf J; Fahiminiyah S; Muir TW; Majewski J; Thompson CB; Chi P; Garcia BA; Allis CD; Jabado N; Lewis PW
    Science; 2016 May; 352(6287):844-9. PubMed ID: 27174990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Context-specific regulation of cancer epigenomes by histone and transcription factor methylation.
    Sarris M; Nikolaou K; Talianidis I
    Oncogene; 2014 Mar; 33(10):1207-17. PubMed ID: 23503463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deregulation of histone-modifying enzymes and chromatin structure modifiers contributes to glioma development.
    Maleszewska M; Kaminska B
    Future Oncol; 2015 Sep; 11(18):2587-601. PubMed ID: 26289459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.