These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 32639136)

  • 1. 3D-Printed Repeating Re-Entrant Topography to Achieve On-Demand Wettability and Separation.
    Wang B; Chen J; Kowall C; Li L
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):35725-35730. PubMed ID: 32639136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D Printing of Bioinspired Liquid Superrepellent Structures.
    Liu X; Gu H; Wang M; Du X; Gao B; Elbaz A; Sun L; Liao J; Xiao P; Gu Z
    Adv Mater; 2018 May; 30(22):e1800103. PubMed ID: 29603422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Why re-entrant surface topography is needed for robust oleophobicity.
    Nosonovsky M; Bhushan B
    Philos Trans A Math Phys Eng Sci; 2016 Aug; 374(2073):. PubMed ID: 27354728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Programmable Liquid Adhesion on Bio-Inspired Re-Entrant Structures.
    Liu X; Gu H; Ding H; Du X; He Z; Sun L; Liao J; Xiao P; Gu Z
    Small; 2019 Aug; 15(35):e1902360. PubMed ID: 31305010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D Bioinspired Microstructures for Switchable Repellency in both Air and Liquid.
    Liu X; Gu H; Ding H; Du X; Wei M; Chen Q; Gu Z
    Adv Sci (Weinh); 2020 Oct; 7(20):2000878. PubMed ID: 33101848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Additive Printed All-Cellulose Membranes with Hierarchical Structure for Highly Efficient Separation of Oil/Water Nanoemulsions.
    Li D; Huang X; Huang Y; Yuan J; Huang D; Cheng GJ; Zhang L; Chang C
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):44375-44382. PubMed ID: 31682395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D-Printed Anti-Fouling Cellulose Mesh for Highly Efficient Oil/Water Separation Applications.
    Koh JJ; Lim GJH; Zhou X; Zhang X; Ding J; He C
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13787-13795. PubMed ID: 30884229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D Printed Auxetic Mechanical Metamaterial with Chiral Cells and Re-entrant Cores.
    Jiang Y; Li Y
    Sci Rep; 2018 Feb; 8(1):2397. PubMed ID: 29402940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving the Resolution of 3D-Printed Molds for Microfluidics by Iterative Casting-Shrinkage Cycles.
    Sun M; Xie Y; Zhu J; Li J; Eijkel JC
    Anal Chem; 2017 Feb; 89(4):2227-2231. PubMed ID: 28192927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual Superlyophobic Aliphatic Polyketone Membranes for Highly Efficient Emulsified Oil-Water Separation: Performance and Mechanism.
    Cheng L; Wang DM; Shaikh AR; Fang LF; Jeon S; Saeki D; Zhang L; Liu CJ; Matsuyama H
    ACS Appl Mater Interfaces; 2018 Sep; 10(36):30860-30870. PubMed ID: 30111092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Competing with barnacle cement: wetting resistance of a re-entrant surface reduces underwater adhesion of barnacles.
    Petersen DS; Kleinteich T; Gorb SN; Heepe L
    J R Soc Interface; 2018 Aug; 15(145):. PubMed ID: 30135262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D-printing zirconia implants; a dream or a reality? An in-vitro study evaluating the dimensional accuracy, surface topography and mechanical properties of printed zirconia implant and discs.
    Osman RB; van der Veen AJ; Huiberts D; Wismeijer D; Alharbi N
    J Mech Behav Biomed Mater; 2017 Nov; 75():521-528. PubMed ID: 28846981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioinspired Design of Three-Dimensional Ordered Tribrachia-Post Arrays with Re-entrant Geometry for Omniphobic and Slippery Surfaces.
    Wu Y; Zhou S; You B; Wu L
    ACS Nano; 2017 Aug; 11(8):8265-8272. PubMed ID: 28745868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. "Paintable" 3D printed structures via a post-ATRP process with antimicrobial function for biomedical applications.
    Guo Q; Cai X; Wang X; Yang J
    J Mater Chem B; 2013 Dec; 1(48):6644-6649. PubMed ID: 32261273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfabrication of re-entrant surface with hydrophobicity/oleophobicity for liquid foods.
    Yamaguchi M
    Sci Rep; 2020 Feb; 10(1):2250. PubMed ID: 32042014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-Velocity Impact Resistance of 3D Re-Entrant Honeycomb Sandwich Structures with CFRP Face Sheets.
    Cui Z; Qi J; Duan Y; Tie Y; Zheng Y; Yang J; Li C
    Polymers (Basel); 2023 Feb; 15(5):. PubMed ID: 36904333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible-templated imprinting for fluorine-free, omniphobic plastics with re-entrant structures.
    Zhao X; Park DS; Choi J; Park S; Soper SA; Murphy MC
    J Colloid Interface Sci; 2021 Mar; 585():668-675. PubMed ID: 33127056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration.
    Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ
    Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 4D Printing of Butterfly Scale-Inspired Structures for Wide-Angle Directional Liquid Transport.
    Liu X; Li B; Gu Z; Zhou K
    Small; 2023 Aug; 19(34):e2207640. PubMed ID: 37078893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On demand manufacturing of patient-specific liquid capsules via co-ordinated 3D printing and liquid dispensing.
    Okwuosa TC; Soares C; Gollwitzer V; Habashy R; Timmins P; Alhnan MA
    Eur J Pharm Sci; 2018 Jun; 118():134-143. PubMed ID: 29540300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.