These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 32639496)

  • 21. Lignin depolymerisation strategies: towards valuable chemicals and fuels.
    Xu C; Arancon RA; Labidi J; Luque R
    Chem Soc Rev; 2014 Nov; 43(22):7485-500. PubMed ID: 25287249
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bioconversion of biomass waste into high value chemicals.
    Cho EJ; Trinh LTP; Song Y; Lee YG; Bae HJ
    Bioresour Technol; 2020 Feb; 298():122386. PubMed ID: 31740245
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Green chemistry, biofuels, and biorefinery.
    Clark JH; Luque R; Matharu AS
    Annu Rev Chem Biomol Eng; 2012; 3():183-207. PubMed ID: 22468603
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermosetting Polymers from Lignin Model Compounds and Depolymerized Lignins.
    Feghali E; Torr KM; van de Pas DJ; Ortiz P; Vanbroekhoven K; Eevers W; Vendamme R
    Top Curr Chem (Cham); 2018 Jul; 376(4):32. PubMed ID: 29992468
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Integration of heterogeneous and biochemical catalysis for production of fuels and chemicals from biomass.
    Wheeldon I; Christopher P; Blanch H
    Curr Opin Biotechnol; 2017 Jun; 45():127-135. PubMed ID: 28365403
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Progress in valorisation of agriculture, aquaculture and shellfish biomass into biochemicals and biomaterials towards sustainable bioeconomy.
    Wan Mahari WA; Waiho K; Fazhan H; Necibi MC; Hafsa J; Mrid RB; Fal S; El Arroussi H; Peng W; Tabatabaei M; Aghbashlo M; Almomani F; Lam SS; Sillanpää M
    Chemosphere; 2022 Mar; 291(Pt 2):133036. PubMed ID: 34822867
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydrothermal oxidative valorisation of lignin into functional chemicals: A review.
    Kumar A; Biswas B; Kaur R; Krishna BB; Bhaskar T
    Bioresour Technol; 2021 Dec; 342():126016. PubMed ID: 34582987
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bimetallic catalysts for upgrading of biomass to fuels and chemicals.
    Alonso DM; Wettstein SG; Dumesic JA
    Chem Soc Rev; 2012 Dec; 41(24):8075-98. PubMed ID: 22872312
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lignin depolymerisation in supercritical carbon dioxide/acetone/water fluid for the production of aromatic chemicals.
    Gosselink RJ; Teunissen W; van Dam JE; de Jong E; Gellerstedt G; Scott EL; Sanders JP
    Bioresour Technol; 2012 Feb; 106():173-7. PubMed ID: 22197338
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Formic-acid-induced depolymerization of oxidized lignin to aromatics.
    Rahimi A; Ulbrich A; Coon JJ; Stahl SS
    Nature; 2014 Nov; 515(7526):249-52. PubMed ID: 25363781
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Selective photocatalysis of lignin-inspired chemicals by integrating hybrid nanocatalysis in microfluidic reactors.
    Colmenares JC; Varma RS; Nair V
    Chem Soc Rev; 2017 Nov; 46(22):6675-6686. PubMed ID: 29034941
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 2G waste lignin to fuel and high value-added chemicals: Approaches, challenges and future outlook for sustainable development.
    Sivagurunathan P; Raj T; Mohanta CS; Semwal S; Satlewal A; Gupta RP; Puri SK; Ramakumar SSV; Kumar R
    Chemosphere; 2021 Apr; 268():129326. PubMed ID: 33360003
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterisation of the products from pyrolysis of residues after acid hydrolysis of Miscanthus.
    Melligan F; Dussan K; Auccaise R; Novotny EH; Leahy JJ; Hayes MH; Kwapinski W
    Bioresour Technol; 2012 Mar; 108():258-63. PubMed ID: 22281143
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels.
    Zhou CH; Xia X; Lin CX; Tong DS; Beltramini J
    Chem Soc Rev; 2011 Nov; 40(11):5588-617. PubMed ID: 21863197
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biochemical Conversion Processes of Lignocellulosic Biomass to Fuels and Chemicals - A Review.
    Brethauer S; Studer MH
    Chimia (Aarau); 2015; 69(10):572-81. PubMed ID: 26598400
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Techno-economic Analysis for Integrating an Electrochemical Reactor into a Lignocellulosic Biorefinery for Production of Industrial Chemicals and Hydrogen.
    NaderiNasrabadi M; Rakshit SK; Viswanathan G; Chen Z; Harrington PB; Staser JA
    Appl Biochem Biotechnol; 2021 Mar; 193(3):791-806. PubMed ID: 33184765
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lignocellulosic Biomass: A Sustainable Bioenergy Source for the Future.
    Fatma S; Hameed A; Noman M; Ahmed T; Shahid M; Tariq M; Sohail I; Tabassum R
    Protein Pept Lett; 2018; 25(2):148-163. PubMed ID: 29359659
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lignin-based polymers and nanomaterials.
    Grossman A; Vermerris W
    Curr Opin Biotechnol; 2019 Apr; 56():112-120. PubMed ID: 30458357
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reductive catalytic fractionation: state of the art of the lignin-first biorefinery.
    Renders T; Van den Bossche G; Vangeel T; Van Aelst K; Sels B
    Curr Opin Biotechnol; 2019 Apr; 56():193-201. PubMed ID: 30677700
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Catalytic Strategies Towards Lignin-Derived Chemicals.
    Van den Bosch S; Koelewijn SF; Renders T; Van den Bossche G; Vangeel T; Schutyser W; Sels BF
    Top Curr Chem (Cham); 2018 Aug; 376(5):36. PubMed ID: 30151801
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.