These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 32639811)
1. Asymmetric Excitation of Surface Plasmon Polaritons via Paired Slot Antennas for Angstrom Displacement Sensing. Zang T; Zang H; Xi Z; Du J; Wang H; Lu Y; Wang P Phys Rev Lett; 2020 Jun; 124(24):243901. PubMed ID: 32639811 [TBL] [Abstract][Full Text] [Related]
2. Nanoscale Refractive Index Sensors with High Figures of Merit Gao B; Wang Y; Zhang T; Xu Y; He A; Dai L; Zhang J ACS Nano; 2019 Aug; 13(8):9131-9138. PubMed ID: 31390178 [TBL] [Abstract][Full Text] [Related]
6. Manipulation of the steering and shaping of SPPs via spatially inhomogeneous polarized illumination. Lan TH; Tien CH Opt Express; 2010 Oct; 18(22):23314-23. PubMed ID: 21164672 [TBL] [Abstract][Full Text] [Related]
8. Unidirectional propagation of electrically driven surface plasmon polaritons: a numerical study. Jiang Z; Wang L Nanotechnology; 2020 Nov; 31(45):455207. PubMed ID: 32702679 [TBL] [Abstract][Full Text] [Related]
9. Role of surface plasmon polaritons and other waves in the radiation of resonant optical dipole antennas. Jia H; Liu H; Zhong Y Sci Rep; 2015 Feb; 5():8456. PubMed ID: 25678191 [TBL] [Abstract][Full Text] [Related]
10. Near-field manipulation of Tamm plasmon polaritons. Li N; Zou Q; Zhao B; Min C; Yuan X; Somekh M; Feng F Opt Express; 2023 Feb; 31(5):7321-7335. PubMed ID: 36859866 [TBL] [Abstract][Full Text] [Related]
11. Surface plasmon polaritons of higher-order mode and standing waves in metallic nanowires. Liaw JW; Mao SY; Luo JY; Ku YC; Kuo MK Opt Express; 2021 Jun; 29(12):18876-18888. PubMed ID: 34154134 [TBL] [Abstract][Full Text] [Related]
12. In-Plane Radiation of Surface Plasmon Polaritons Excited by Free Electrons. Zhang P; Dong Y; Li X; Cao X; Yang Y; Yu G; Yang S; Wang S; Gong Y Micromachines (Basel); 2024 May; 15(6):. PubMed ID: 38930693 [TBL] [Abstract][Full Text] [Related]
13. Local excitation and interference of surface phonon polaritons studied by near-field infrared microscopy. Huber AJ; Ocelic N; Hillenbrand R J Microsc; 2008 Mar; 229(Pt 3):389-95. PubMed ID: 18331484 [TBL] [Abstract][Full Text] [Related]
14. Cathodoluminescence Phase Extraction of the Coupling between Nanoparticles and Surface Plasmon Polaritons. Sannomiya T; Konečná A; Matsukata T; Thollar Z; Okamoto T; García de Abajo FJ; Yamamoto N Nano Lett; 2020 Jan; 20(1):592-598. PubMed ID: 31855432 [TBL] [Abstract][Full Text] [Related]
15. Fresnel Refraction and Diffraction of Surface Plasmon Polaritons in Two-Dimensional Conducting Sheets. Inampudi S; Mosallaei H ACS Omega; 2016 Nov; 1(5):843-853. PubMed ID: 31457167 [TBL] [Abstract][Full Text] [Related]
16. Launching of surface plasmon polaritons with tunable directions and intensity ratios by phase control of dual fundamental Gaussian beams. Kuo CF; Chu SC Opt Express; 2017 May; 25(9):10456-10463. PubMed ID: 28468417 [TBL] [Abstract][Full Text] [Related]
17. Boosting Local Field Enhancement by on-Chip Nanofocusing and Impedance-Matched Plasmonic Antennas. Zenin VA; Andryieuski A; Malureanu R; Radko IP; Volkov VS; Gramotnev DK; Lavrinenko AV; Bozhevolnyi SI Nano Lett; 2015 Dec; 15(12):8148-54. PubMed ID: 26551324 [TBL] [Abstract][Full Text] [Related]
18. More electromagnetic energy converged by the assembly of magnetic resonator and antennas. Hou Y Nanoscale; 2012 Feb; 4(3):874-8. PubMed ID: 22187002 [TBL] [Abstract][Full Text] [Related]
19. Excitation of surface plasmon polaritons by diffraction-free and vector beams. Diouf M; Burrow JA; Krishna K; Odessey R; Abouraddy AF; Toussaint KC Appl Opt; 2022 Sep; 61(25):7469-7473. PubMed ID: 36256051 [TBL] [Abstract][Full Text] [Related]
20. Exciting graphene surface plasmon polaritons through light and sound interplay. Farhat M; Guenneau S; Bağcı H Phys Rev Lett; 2013 Dec; 111(23):237404. PubMed ID: 24476303 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]