BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 32640074)

  • 1. Growth kinetics of Myceliophthora thermophila M.7·7 in solid-state cultivation.
    Dos Santos Gomes AC; Casciatori FP; Gomes E; da Costa Carreira Nunes C; Moretti MMS; Thoméo JC
    J Appl Microbiol; 2021 Jan; 130(1):90-99. PubMed ID: 32640074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving enzyme production by solid-state cultivation in packed-bed bioreactors by changing bed porosity and airflow distribution.
    Perez CL; Casciatori FP; Thoméo JC
    Bioprocess Biosyst Eng; 2021 Mar; 44(3):537-548. PubMed ID: 33222033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced production of bacterial xylanase and its utility in saccharification of sugarcane bagasse.
    Alokika ; Singh B
    Bioprocess Biosyst Eng; 2020 Jun; 43(6):1081-1091. PubMed ID: 32065289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Filamentous fungi and media for cellulase production in solid state cultures.
    Kilikian BV; Afonso LC; Souza TF; Ferreira RG; Pinheiro IR
    Braz J Microbiol; 2014; 45(1):279-86. PubMed ID: 24948946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Saccharification of ozonated sugarcane bagasse using enzymes from Myceliophthora thermophila JCP 1-4 for sugars release and ethanol production.
    de Cassia Pereira J; Travaini R; Paganini Marques N; Bolado-Rodríguez S; Bocchini Martins DA
    Bioresour Technol; 2016 Mar; 204():122-129. PubMed ID: 26773948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient plant biomass degradation by thermophilic fungus Myceliophthora heterothallica.
    van den Brink J; van Muiswinkel GC; Theelen B; Hinz SW; de Vries RP
    Appl Environ Microbiol; 2013 Feb; 79(4):1316-24. PubMed ID: 23241981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MtTRC-1, a Novel Transcription Factor, Regulates Cellulase Production via Directly Modulating the Genes Expression of the
    Li N; Liu Y; Liu D; Liu D; Zhang C; Lin L; Zhu Z; Li H; Dai Y; Wang X; Liu Q; Tian C
    Appl Environ Microbiol; 2022 Oct; 88(19):e0126322. PubMed ID: 36165620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the Enzymatic Arsenal Secreted by
    Grieco MAB; Haon M; Grisel S; de Oliveira-Carvalho AL; Magalhães AV; Zingali RB; Pereira N; Berrin JG
    Front Bioeng Biotechnol; 2020; 8():1028. PubMed ID: 32984289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extracellular aldonolactonase from Myceliophthora thermophila.
    Beeson WT; Iavarone AT; Hausmann CD; Cate JH; Marletta MA
    Appl Environ Microbiol; 2011 Jan; 77(2):650-6. PubMed ID: 21075873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing xylanase production in the thermophilic fungus Myceliophthora thermophila by homologous overexpression of Mtxyr1.
    Wang J; Wu Y; Gong Y; Yu S; Liu G
    J Ind Microbiol Biotechnol; 2015 Sep; 42(9):1233-41. PubMed ID: 26173497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aspergillus fumigatus thermophilic and acidophilic endoglucanases.
    Grigorevski-Lima AL; Da Vinha FN; Souza DT; Bispo AS; Bon EP; Coelho RR; Nascimento RP
    Appl Biochem Biotechnol; 2009 May; 155(1-3):321-9. PubMed ID: 19127443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myceliophthora thermophila syn. Sporotrichum thermophile: a thermophilic mould of biotechnological potential.
    Singh B
    Crit Rev Biotechnol; 2016; 36(1):59-69. PubMed ID: 25025273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermophilic growth and enzymatic thermostability are polyphyletic traits within Chaetomiaceae.
    van den Brink J; Facun K; de Vries M; Stielow JB
    Fungal Biol; 2015 Dec; 119(12):1255-1266. PubMed ID: 26615748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing Cellulase Production in Thermophilic Fungus Myceliophthora thermophila ATCC42464 by RNA Interference of cre1 Gene Expression.
    Yang F; Gong Y; Liu G; Zhao S; Wang J
    J Microbiol Biotechnol; 2015 Jul; 25(7):1101-7. PubMed ID: 25824435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning, expression, and characterization of a thermostable GH7 endoglucanase from Myceliophthora thermophila capable of high-consistency enzymatic liquefaction.
    Karnaouri AC; Topakas E; Christakopoulos P
    Appl Microbiol Biotechnol; 2014 Jan; 98(1):231-42. PubMed ID: 23615741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptional analysis of Myceliophthora thermophila on soluble starch and role of regulator AmyR on polysaccharide degradation.
    Xu G; Li J; Liu Q; Sun W; Jiang M; Tian C
    Bioresour Technol; 2018 Oct; 265():558-562. PubMed ID: 29843921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new regulator of cellulase and xylanase in the thermophilic fungus
    Wang J; Gong Y; Zhao S; Liu G
    3 Biotech; 2018 Mar; 8(3):160. PubMed ID: 29527447
    [No Abstract]   [Full Text] [Related]  

  • 18. Addition of feruloyl esterase and xylanase produced on-site improves sugarcane bagasse hydrolysis.
    Braga CMP; Delabona PDS; Lima DJDS; Paixão DAA; Pradella JGDC; Farinas CS
    Bioresour Technol; 2014 Oct; 170():316-324. PubMed ID: 25151076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptome and exoproteome analysis of utilization of plant-derived biomass by Myceliophthora thermophila.
    Kolbusz MA; Di Falco M; Ishmael N; Marqueteau S; Moisan MC; Baptista CDS; Powlowski J; Tsang A
    Fungal Genet Biol; 2014 Nov; 72():10-20. PubMed ID: 24881579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of the solid state fermentation of sugarcane bagasse by Thermoascus aurantiacus for the production of xylanase.
    dos Santos E; Piovan T; Roberto IC; Milagres AM
    Biotechnol Lett; 2003 Jan; 25(1):13-6. PubMed ID: 12882299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.