BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

468 related articles for article (PubMed ID: 32640428)

  • 1. Digestion degree is a key factor to regulate the printability of pure tendon decellularized extracellular matrix bio-ink in extrusion-based 3D cell printing.
    Zhao F; Cheng J; Sun M; Yu H; Wu N; Li Z; Zhang J; Li Q; Yang P; Liu Q; Hu X; Ao Y
    Biofabrication; 2020 Jul; 12(4):045011. PubMed ID: 32640428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of three different acidic solutions in tendon decellularized extracellular matrix bio-ink fabrication for 3D cell printing.
    Zhao F; Cheng J; Zhang J; Yu H; Dai W; Yan W; Sun M; Ding G; Li Q; Meng Q; Liu Q; Duan X; Hu X; Ao Y
    Acta Biomater; 2021 Sep; 131():262-275. PubMed ID: 34157451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decellularized extracellular matrix-based bio-ink with enhanced 3D printability and mechanical properties.
    Kim MK; Jeong W; Lee SM; Kim JB; Jin S; Kang HW
    Biofabrication; 2020 Jan; 12(2):025003. PubMed ID: 31783385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D bioprinting of mechanically tuned bioinks derived from cardiac decellularized extracellular matrix.
    Shin YJ; Shafranek RT; Tsui JH; Walcott J; Nelson A; Kim DH
    Acta Biomater; 2021 Jan; 119():75-88. PubMed ID: 33166713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tailoring mechanical properties of decellularized extracellular matrix bioink by vitamin B2-induced photo-crosslinking.
    Jang J; Kim TG; Kim BS; Kim SW; Kwon SM; Cho DW
    Acta Biomater; 2016 Mar; 33():88-95. PubMed ID: 26774760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of detergent type on the performance of liver decellularized extracellular matrix-based bio-inks.
    Jeong W; Kim MK; Kang HW
    J Tissue Eng; 2021; 12():2041731421997091. PubMed ID: 33717429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tissue-Specific Hydrogels for Three-Dimensional Printing and Potential Application in Peripheral Nerve Regeneration.
    Wang T; Han Y; Wu Z; Qiu S; Rao Z; Zhao C; Zhu Q; Quan D; Bai Y; Liu X
    Tissue Eng Part A; 2022 Feb; 28(3-4):161-174. PubMed ID: 34309417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rheological Analysis of Bio-ink for 3D Bio-printing Processes.
    Habib MA; Khoda B
    J Manuf Process; 2022 Apr; 76():708-718. PubMed ID: 35296051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of Liver Decellularized Extracellular Matrix Bioink for Three-Dimensional Cell Printing-Based Liver Tissue Engineering.
    Lee H; Han W; Kim H; Ha DH; Jang J; Kim BS; Cho DW
    Biomacromolecules; 2017 Apr; 18(4):1229-1237. PubMed ID: 28277649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability.
    Paxton N; Smolan W; Böck T; Melchels F; Groll J; Jungst T
    Biofabrication; 2017 Nov; 9(4):044107. PubMed ID: 28930091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A potential dermal substitute using decellularized dermis extracellular matrix derived bio-ink.
    Won JY; Lee MH; Kim MJ; Min KH; Ahn G; Han JS; Jin S; Yun WS; Shim JH
    Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):644-649. PubMed ID: 30873886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of Bioink from Decellularized Tendon Extracellular Matrix for 3D Bioprinting.
    Toprakhisar B; Nadernezhad A; Bakirci E; Khani N; Skvortsov GA; Koc B
    Macromol Biosci; 2018 Oct; 18(10):e1800024. PubMed ID: 30019414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of 3D Printing Scaffold with Porcine Skin Decellularized Bio-Ink for Soft Tissue Engineering.
    Lee SJ; Lee JH; Park J; Kim WD; Park SA
    Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32785023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Directing the growth and alignment of biliary epithelium within extracellular matrix hydrogels.
    Lewis PL; Yan M; Su J; Shah RN
    Acta Biomater; 2019 Feb; 85():84-93. PubMed ID: 30590182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue-specific gelatin bioink as a rheology modifier for high printability and adjustable tissue properties.
    Han H; Kim M; Yong U; Jo Y; Choi YM; Kim HJ; Hwang DG; Kang D; Jang J
    Biomater Sci; 2024 May; 12(10):2599-2613. PubMed ID: 38546094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D printing of mechanically functional meniscal tissue equivalents using high concentration extracellular matrix inks.
    Wang B; Barceló X; Von Euw S; Kelly DJ
    Mater Today Bio; 2023 Jun; 20():100624. PubMed ID: 37122835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemistry matters: A side-by-side comparison of two chemically distinct methacryloylated dECM bioresins for vat photopolymerization.
    Almalla A; Elomaa L; Fribiczer N; Landes T; Tang P; Mahfouz Z; Koksch B; Hillebrandt KH; Sauer IM; Heinemann D; Seiffert S; Weinhart M
    Biomater Adv; 2024 Jun; 160():213850. PubMed ID: 38626580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Directed differential behaviors of multipotent adult stem cells from decellularized tissue/organ extracellular matrix bioinks.
    Han W; Singh NK; Kim JJ; Kim H; Kim BS; Park JY; Jang J; Cho DW
    Biomaterials; 2019 Dec; 224():119496. PubMed ID: 31557592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Precise stacking of decellularized extracellular matrix based 3D cell-laden constructs by a 3D cell printing system equipped with heating modules.
    Ahn G; Min KH; Kim C; Lee JS; Kang D; Won JY; Cho DW; Kim JY; Jin S; Yun WS; Shim JH
    Sci Rep; 2017 Aug; 7(1):8624. PubMed ID: 28819137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink.
    Pati F; Jang J; Ha DH; Won Kim S; Rhie JW; Shim JH; Kim DH; Cho DW
    Nat Commun; 2014 Jun; 5():3935. PubMed ID: 24887553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.