These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 32640593)

  • 41. Weak Iron Oxidation by
    Christel S; Herold M; Bellenberg S; Buetti-Dinh A; El Hajjami M; Pivkin IV; Sand W; Wilmes P; Poetsch A; Vera M; Dopson M
    Front Microbiol; 2018; 9():3059. PubMed ID: 30631311
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An integrated insight into bioleaching performance of chalcopyrite mediated by microbial factors: Functional types and biodiversity.
    Tao J; Liu X; Luo X; Teng T; Jiang C; Drewniak L; Yang Z; Yin H
    Bioresour Technol; 2021 Jan; 319():124219. PubMed ID: 33254450
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Insights into the dynamics of bacterial communities during chalcopyrite bioleaching.
    He Z; Gao F; Zhao J; Hu Y; Qiu G
    FEMS Microbiol Ecol; 2010 Oct; 74(1):155-64. PubMed ID: 20698885
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of pyrite and sphalerite on population compositions, dynamics and copper extraction efficiency in chalcopyrite bioleaching process.
    Xiao Y; Liu X; Dong W; Liang Y; Niu J; Gu Y; Ma L; Hao X; Zhang X; Xu Z; Yin H
    Arch Microbiol; 2017 Jul; 199(5):757-766. PubMed ID: 28260145
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The detoxification potential of ferric ions for bioleaching of the chalcopyrite associated with fluoride-bearing gangue mineral.
    Ma L; Wu J; Liu X; Tan L; Wang X
    Appl Microbiol Biotechnol; 2019 Mar; 103(5):2403-2412. PubMed ID: 30617533
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Geochemical investigations of noble metal-bearing ores: Synchrotron-based micro-analyses and microcosm bioleaching studies.
    Brinza L; Ahmed I; Cismasiu CM; Ardelean I; Breaban IG; Doroftei F; Ignatyev K; Moisescu C; Neamtu M
    Chemosphere; 2021 May; 270():129388. PubMed ID: 33423005
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Electrochemical Applications in Metal Bioleaching.
    Tanne CK; Schippers A
    Adv Biochem Eng Biotechnol; 2019; 167():327-359. PubMed ID: 29224081
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Silicate mineral dissolution during heap bioleaching.
    Dopson M; Halinen AK; Rahunen N; Boström D; Sundkvist JE; Riekkola-Vanhanen M; Kaksonen AH; Puhakka JA
    Biotechnol Bioeng; 2008 Mar; 99(4):811-20. PubMed ID: 17705245
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A concise review of nanoscopic aspects of bioleaching bacteria-mineral interactions.
    Diao M; Taran E; Mahler S; Nguyen AV
    Adv Colloid Interface Sci; 2014 Oct; 212():45-63. PubMed ID: 25245273
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Relationships between galvanic interaction, copper extraction and community dynamics during bioleaching of chalcopyrite by a moderately thermophilic culture.
    Wang Y; Chen X; Zhou H
    Bioresour Technol; 2018 Oct; 265():581-585. PubMed ID: 30017363
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Thermophilic archaeal community succession and function change associated with the leaching rate in bioleaching of chalcopyrite.
    Zhu W; Xia JL; Yang Y; Nie ZY; Peng AA; Liu HC; Qiu GZ
    Bioresour Technol; 2013 Apr; 133():405-13. PubMed ID: 23454386
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Impact of molecular hydrogen on chalcopyrite bioleaching by the extremely thermoacidophilic archaeon Metallosphaera sedula.
    Auernik KS; Kelly RM
    Appl Environ Microbiol; 2010 Apr; 76(8):2668-72. PubMed ID: 20190092
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bioleaching of two different genetic types of chalcopyrite and their comparative mineralogical assessment.
    Deng S; Gu G; Ji J; Xu B
    Anal Bioanal Chem; 2018 Feb; 410(6):1725-1733. PubMed ID: 29270659
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Enhanced "contact mechanism" for interaction of extracellular polymeric substances with low-grade copper-bearing sulfide ore in bioleaching by moderately thermophilic Acidithiobacillus caldus.
    Huang Z; Feng S; Tong Y; Yang H
    J Environ Manage; 2019 Jul; 242():11-21. PubMed ID: 31026798
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Two-Stage Oxidative Leaching of Low-Grade Copper-Zinc Sulfide Concentrate.
    Bulaev A; Melamud V
    Microorganisms; 2022 Sep; 10(9):. PubMed ID: 36144382
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Rapid specific detection and quantification of bacteria and archaea involved in mineral sulfide bioleaching using real-time PCR.
    Liu CQ; Plumb J; Hendry P
    Biotechnol Bioeng; 2006 Jun; 94(2):330-6. PubMed ID: 16508994
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Synergistic bioleaching of chalcopyrite and bornite in the presence of Acidithiobacillus ferrooxidans.
    Zhao H; Wang J; Hu M; Qin W; Zhang Y; Qiu G
    Bioresour Technol; 2013 Dec; 149():71-6. PubMed ID: 24084207
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Relationship between bioleaching performance, bacterial community structure and mineralogy in the bioleaching of a copper concentrate in stirred-tank reactors.
    Spolaore P; Joulian C; Gouin J; Morin D; d'Hugues P
    Appl Microbiol Biotechnol; 2011 Jan; 89(2):441-8. PubMed ID: 20890755
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Metal resistance and lithoautotrophy in the extreme thermoacidophile Metallosphaera sedula.
    Maezato Y; Johnson T; McCarthy S; Dana K; Blum P
    J Bacteriol; 2012 Dec; 194(24):6856-63. PubMed ID: 23065978
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Application of real-time PCR to monitor population dynamics of defined mixed cultures of moderate thermophiles involved in bioleaching of chalcopyrite.
    Zhang RB; Wei MM; Ji HG; Chen XH; Qiu GZ; Zhou HB
    Appl Microbiol Biotechnol; 2009 Jan; 81(6):1161-8. PubMed ID: 19039582
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.